全固态薄膜锂电池研究进展和产业化展望

陈牧 颜悦 刘伟明 周辰 郭志强 张晓锋 望咏林 厉蕾 张官理

陈牧, 颜悦, 刘伟明, 周辰, 郭志强, 张晓锋, 望咏林, 厉蕾, 张官理. 全固态薄膜锂电池研究进展和产业化展望[J]. 航空材料学报, 2014, 34(6): 1-20. doi: 10.11868/j.issn.1005-5053.2014.6.001
引用本文: 陈牧, 颜悦, 刘伟明, 周辰, 郭志强, 张晓锋, 望咏林, 厉蕾, 张官理. 全固态薄膜锂电池研究进展和产业化展望[J]. 航空材料学报, 2014, 34(6): 1-20. doi: 10.11868/j.issn.1005-5053.2014.6.001
CHEN Mu, YAN Yue, LIU Wei-ming, ZHOU Chen, GUO Zhi-qiang, ZHANG Xiao-feng, WANG Yong-lin, LI Lei, ZHANG Guan-li. Research Advances and Industrialization Prospects of All-Solid-State Thin-Film Lithium Battery[J]. Journal of Aeronautical Materials, 2014, 34(6): 1-20. doi: 10.11868/j.issn.1005-5053.2014.6.001
Citation: CHEN Mu, YAN Yue, LIU Wei-ming, ZHOU Chen, GUO Zhi-qiang, ZHANG Xiao-feng, WANG Yong-lin, LI Lei, ZHANG Guan-li. Research Advances and Industrialization Prospects of All-Solid-State Thin-Film Lithium Battery[J]. Journal of Aeronautical Materials, 2014, 34(6): 1-20. doi: 10.11868/j.issn.1005-5053.2014.6.001

全固态薄膜锂电池研究进展和产业化展望

doi: 10.11868/j.issn.1005-5053.2014.6.001
详细信息
    通讯作者:

    颜悦(1966—), 男, 研究员, 博士, 主要从事透明件和透明导电薄膜研究, (E-mail)yue.yan@biam.ac.cn;陈牧(1985—), 男, 工程师, 博士, 主要从事薄膜锂电池、透明导电薄膜研究, (E-mail)chenmu2013@tsinghua.org.cn

    颜悦(1966—), 男, 研究员, 博士, 主要从事透明件和透明导电薄膜研究, (E-mail)yue.yan@biam.ac.cn;陈牧(1985—), 男, 工程师, 博士, 主要从事薄膜锂电池、透明导电薄膜研究, (E-mail)chenmu2013@tsinghua.org.cn

  • 中图分类号: TM911;TQ152;O646.21

Research Advances and Industrialization Prospects of All-Solid-State Thin-Film Lithium Battery

  • 摘要: 全固态薄膜锂电池利用固态电解质替代传统电解液,采用多层薄膜堆垛的平面结构,属于新一代的锂离子电池,在军民两用的可穿戴设备、便携式移动电源、汽车和航空动力电池等领域应用前景广阔.该类电池因高安全性、长循环寿命、高比容量和高能量密度等优势性能受到业界广泛关注.本文概述薄膜锂电池的分类和充放电原理,总结正负极、电解质薄膜材料的发展历程和薄膜制备手段的改进,对比各类电池材料的电化学性能,引入该方向最新的研究进展:三维薄膜锂电池,可变形的柔性电池,高电压、大容量电池组.汇总国外商用电池产品、关键优势技术、电池制备设备,提出薄膜锂电池亟待解决的科学问题和国内潜在的产业化方向.

     

  • [1] NOORDEN R V. The rechargeable revolution: a better battery[J]. Nature, 2014, 507:26-28.
    [2] 崔玺康,杨洋. 波音787停飞事件的影响及启示 // 2013年首届中国航空科学技术大会论文集.北京:中国航空学会,2013. (CUI Y K, YAN Y. The impact of FAA grounding Boeing 77//The first Chinese aviation science and technology conference. Beijing:Chinese Society of Aeronautics and Astronautics, 2013.)
    [3] 王薇. 特斯拉着火"烤"问电动车安全. 中国保险报,2013-10-16. (WANG W. Tesla fires question the safety of vehicle. China Insurance Quoto, 2013-10-16.
    [4] FERGUS J W, Ceramic and polymeric solid electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 2010, 195(15): 4554-4569.
    [5] BATES J B, DUDNEY N J, NEUDECKER B, et al. Thin-film lithium and lithium-ion batteries[J]. Solid State Ionics, 2000, 135(1/4): 33-45.
    [6] DUDNEY N J. Solid-state thin-film rechargeable batteries[J]. Materials Science and Engineering: B, 2005, 116(3): 245-249.
    [7] KOO M, PARK K I, LEE S H, et al. Bendable inorganic thin-film battery for fully flexible electronics systems[J]. Nano Letters, 2012, 12(9):4810-4816.
    [8] 刘晋,徐俊毅,林月,等,全固态锂离子电池的研究及产业化前景[J]. 化学学报, 2013, 71:869-878.(LIU J, XU J Y, LIN Y, et al. All-solid-state lithium ion battery: research and industrial prospects[J]. Acta Chimica Sinica, 2013, 71: 869-878.)
    [9] BATES J B, DUDNEY N J, LUBBEN D C, et al. Thin-film rechargeable lithium batteries[J]. Journal of Power Sources, 1995, 54(1): 58-62.
    [10] NEUDECKER B J, ZUHR R A, BATES J B. Lithium silicon tin oxynitride (LiySiTON): high-performance anode in thin-film lithium-ion batteries for microelectronics[J]. Journal of Power Sources, 1999, 81/82: 27-32.
    [11] NEUDECKER B J, DUDNEY N J, BATES J B. "Lithium-free" thin-film battery with in situ plated Li anode[J]. Journal of The Electrochemical Society, 2000, 147(2): 517-523.
    [12] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414: 359-367.
    [13] SCROSATI B. Recent advances in lithium solid state batteries[J]. Journal of Applied Electrochemistry, 1972, 2(3): 231-238.
    [14] KANEHORI K, MATSUMOTO K, MIYAUCHI K, et al. Thin film solid electrolyte and its application to secondary lithium cell[J]. Solid State Ionics, 1983, 9/10(2):1445-1448.
    [15] BATES J B, DUDNEY N J, GRUZALSKI G R, et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries[J]. Journal of Power Sources, 1993, 43(1/3): 103-110.
    [16] BATES J B, DUDNEY N J, NEUDECKER B J, et al. Preferred orientation of polycrystalline LiCoO2 films[J]. Journal of The Electrochemical Society, 2000, 147(1):59-70.
    [17] CHIU K F. In situ modification of RF sputter-deposited lithium nickel oxide thin films by plasma irradiation[J]. Journal of Electrochemical Society, 2004, 151(11): A1865-A1869.
    [18] DUDNEY N J, BATES J B, ZUHR R A, et al. Nanocrystalline LixMn2-yO4 cathodes for solid-state thin-film rechargeable lithium batteries[J]. Journal of The Electrochemical Society, 1999, 146(7): 2455-2464.
    [19] HONG J, WANG C S, DUDNEY N J, et al. Characterization and performance of LiFePO4 thin-film cathodes prepared with radio-frequency magnetron-sputter deposition[J]. Journal of The Electrochemical Society, 2007, 154(8):A805-A809.
    [20] KOBAYASHI Y, MIYASHIRO H, TAKEI K, et al. 5V class all-solid-state composite lithium battery with Li3PO4 coated LiNi0.5Mn1.5O4[J]. Journal of The Electrochemical Society, 2003, 150(12): A1577-A1582.
    [21] YIM H, KONG W Y, KIM Y C, et al. Electrochemical properties of LiO2 cathode thin film by RF sputtering for all-solid-state lithium battery[J]. Journal of Solid State Chemistry, 2012, 196: 288-292.
    [22] HIRAI K, TATSUMISAGO M, TAKAHASHI M, et al. 29Si and 31P MAS-NMR spectra of Li2S-SiS2-Li3PO4 rapidly quenched glasses[J]. Journal of the American Ceramic Society, 1996, 79(2): 349-353.
    [23] HAYASHI A, HAMA S, MORIMOTO H, et al. Preparation of Li2S2-P2O5 amorphous solid electrolytes by mechanical milling[J]. Journal of the American Ceramic Society, 2001, 84(2): 477-479.
    [24] TAKADA K, FUJIMOTO K, INADA T, et al. Sol-gel preparation of Li+ ion conductive thin film[J]. Applied Surface Science, 2002,189(3/4): 300-306.
    [25] BATES J B, DUDNEY N J, GRUZALSKI G R, et al. Electrical properties of amorphous lithium electrolyte thin films[J]. Solid State Ionics, 1992, 53/56:647-654.
    [26] HAYRI E A, GREENBLATT M. The preparation and ionic conductivity of sol-gels in the Li2O-P2O5-SiO2 system[J]. Journal of Non-Crystalline Solids, 1987, 94(3): 387-401.
    [27] AONO H, SUGIMOTO E, SADAOKA Y, et al. Ionic conductivity of solid electrolytes based on lithium titanium phosphate[J]. Journal of The Electrochemical Society, 1990, 137(4):1023-1027.
    [28] VEREDA F, GOLDNER R B, HAAS T E, et al. Rapidly grown IBAD LiPON films with high Li-ion conductivity and electrochemical stability[J]. Electrochemical Solid State Letters, 2002, 5(11):A239-A241.
    [29] VEREDA F, CLAY N, GEROUKI A, et al. A study of electronic shorting in IBDA-deposited LiPON films[J]. Journal of Power Resources, 2000, 89(2):201-205.
    [30] KIM H T, MUN T, PARK C, et al. Characteristics of lithium phosphorous oxynitride thin films deposited by metal-organic chemical vapor deposition technique[J]. Journal of Power Sources, 2013, 244(1): 641-645.
    [31] 赵胜利. 用于全固态锂电池的无机电解质薄膜制备与性能研究. 上海:复旦大学,2003.(ZHAO S L. Fabrication and characterization of inorganic electrolyte thin films for all-solid-state lithium battery. Shanghai: Fudan University, 2003.)
    [32] LEE S J, BAIK H K, LEE S M. An all-solid-state thin film battery using LiSiPON electrolyte and Si-V negative electrode films[J]. Electrochemistry Communications, 2003, 5(1):32-35.
    [33] AHN J K, YOON S G. Characteristics of amorphous lithium lanthanum titanate electrolyte thin films grown by PLD for use in rechargeable lithium microbatteries[J]. Electrochemical Solid-State Letters, 2005, 8(2): A75-A78.
    [34] OZER N, LAMPERT C M. Electrochemical lithium insertion in sol-gel deposited LiNbO3 films[J]. Solar Energy Materials and Solar Cells, 1995, 39(2/4):367-375.
    [35] GLASS A M, NASSAU K, NEGRAN T J. Ionic conductivity of quenched alkali niobate and tantalite glasses[J]. Journal of Applied Physics, 1978, 49: 4808.
    [36] LI Z Y, CHEN X F, HU X F. The preparation and ionic conductance of nano-amorphous LixTaOy thin film[J]. Journal of Physics D: Applied Physics, 1996, 29(11): 2740.
    [37] KROL R, GOOSSENS A, MEULENKAMP E A. In situ X-ray diffraction of lithium intercalation in nanostructured and thin film anatase TiO2[J]. Journal of The Electrochemical Society, 1999, 146(9): 3150-3154.
    [38] COLBOW K M, DAHN J R, HAERING R R. Structure and electrochemistry of the spinel oxides LiTi2O4 and Li4/3Ti5/3O4[J]. Journal of Power Sources, 1989, 26(3/4):397-402.
    [39] KASAVAJJULA U, WANG C S, APPLEBY A J. Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells[J]. Journal of Power Sources, 2007, 163(2): 1003-1039.
    [40] GOWARD G R, TAYLOR N J, SOUZA D C S, et al. The true crystal structure of Li17M4 (M=Ge, Sn, Pb)-revised from Li22M5[J]. Journal of Alloys and Compounds, 2001, 329(1/2): 82-91.
    [41] POIZOT P, LARUELLE S, GRUGEON S, et al. Nano-sized transition-metal oxides as negative electrode materials for lithium-ion batteries[J]. Nature, 2000, 407:496-499.
    [42] LI H, WANG Z X, CHEN L Q, et al. Research on advanced materials for Li-ion batteries[J]. Advanced Materials, 2009, 21(45): 4593-4607.
    [43] LI H, BALAYA P, MAIER J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides[J]. Journal of The Electrochemical Society, 2004, 151(11):A1878-A1885.
    [44] BAGGETTO L, VERHAEGH N A M, NIESSEN R A H, et al. Tin nitride thin films as negative electrode material for lithium-ion solid-state batteries[J]. Journal of The Electrochemical Society, 2010, 157(3): A340-A347.
    [45] PEREIRA N, KLEIN L C, AMATUCCI G G. The electrochemistry of Zn3N2 and LiZnN: a lithium reaction mechanism for metal nitride electrodes[J]. Journal of The Electrochemical Society, 2002, 149(3): A262-A271.
    [46] PEREIRA N, BALASUBRAMANIAN M, DUPONT L, et al. The electrochemistry of germanium nitride with lithium[J]. Journal of The Electrochemical Society, 2003, 150(8): A1118-A1128.
    [47] COURTNEY I A, DAHN J R. Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites[J]. Journal of The Electrochemical Society, 1997, 144(6):2045-2052.
    [48] WANG B, BATES J B, HART F X, et al. Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes[J]. Journal of The Electrochemical Society, 1996, 143(10): 3203-3213.
    [49] MATSUSHITA T, DOKKO K, KANAMURA K. Comparison of electrochemical behavior of LiCoO2 thin films prepared by sol-gel and sputtering processes[J]. Journal of The Electrochemical Society, 2005, 152(11): A2229-A2237.
    [50] BOUWMAN P J, BOUKAMP B A, BOUWMEESTER H J M, et al. Structural analysis of submicrometer LiCoO2 films[J]. Journal of The Electrochemical Society, 2001, 148(4): A311-A317.
    [51] KUBO T, NISHIKITANI Y, SAWAI Y, et al. Electrochromic properties of LixNiyO films deposited by RF magnetron sputtering[J]. Journal of The Electrochemical Society, 2009, 156(8): H629-H633.
    [52] FRAGNAUD P, NAGARAJAN R, SCHLEICH D M, et al. Thin-film cathodes for secondary lithium batteries[J]. Journal of Power Sources, 1995, 54(2): 362-366.
    [53] CHIU K F, CHEN P Y. Structural evolution and electrochemical performance of LiFePO4/C thin film deposited by ionized magnetron sputtering[J]. Surface and Coattings Technology, 2008, 203(5/7): 872-875.
    [54] EFTEKHARI A. Electrochemical deposition and modification of LiFePO4 for the preparation of cathode with enhanced battery performance[J]. Journal of The Electrochemical Society, 2004, 151(11): A1816-A1819.
    [55] WEST W C, WHITACRE J F, RATNAKUMAR B V. Radio frequency magnetron-sputtered LiCoPO4 cathodes for 4.8 V thin-film batteries[J]. Journal of The Electrochemical Society, 2003, 150(12): A1660-A1666.
    [56] KUMAGAI N, KITAMOTO H, BABA M, et al. Intercalation of lithium in r.f.-sputtered vanadium oxide film as an electrode material for lithium-ion batteries[J]. Journal of Applied Electrochemistry, 1998, 28(1): 41-48.
    [57] BENAISSA K, ASHRIT P V, BADER G, et al. Electrical and optical properties of LiNbO3[J]. Thin Solid Films, 1992, 214(2): 219-222.
    [58] SAITO Y, SHIOSAKI T. Heteroepitaxial growth of LiTaO3 single-crystal films by RF magnetron sputtering[J]. Japanese Journal of Applied Physics, 1991, 30: 2204-2207.
    [59] LOBL P, HUPPERTZ M, MERGEL D. Nucleation and growth in TiO2 films prepared by sputtering and evaporation[J]. Thin Solid Films, 1994, 251(1): 72-79.
    [60] SUHAIL M H, RAO G M, MOHAN S. DC reactive magnetron sputtering of titanium-structural and optical characterization of TiO2 films[J]. Journal of Applied Physics, 1992, 71: 1421.
    [61] WANG C L, LIAO Y C, HSU F C, et al. Preparation and characterization of thin film Li4Ti5O12 electrodes by magnetron sputtering[J]. Journal of The Electrochemical Society, 2005, 152(4): A653-A657.
    [62] LI C L, ZHANG B, FU Z W. Physical and electrochemical characterization of amorphous lithium lanthanum titanate solid electrolyte thin-film fabricated by e-beam evaporation[J]. Thin Solid Films, 2006, 515(4): 1886-1892.
    [63] 刘文元. 全固态薄膜锂电池的制备及电化学性能研究. 上海:复旦大学,2005.(LIU W Y. Fabrication and electrochemical performance for all-solid-state thin film lithium battery. Shanghai: Fudan University, 2005.)
    [64] BOUWMAN P J, BOUKAMP B A, BOUWMEESTER H J M, et al. Structural analysis of submicrometer LiCoO2 films[J]. Journal of The Electrochemical Society, 2001,148(4): A311-A317.
    [65] WEN S J, ROTTKAY K, RUBIN M. Electrochromic lithium nickel oxide thin film by pulsed laser deposition[J]. Proceedings Volumes: The Electrochemical Society, 1997, 96(24):54-63.
    [66] STRIEBEL K A, DENG C Z, WEN S J, et al. Electrochemical behavior of LiMn2O4 and LiCoO2 thin films produced with pulsed laser deposition[J]. Journal of The Electrochemical Society, 1996, 143(6): 1821-1827.
    [67] IRIYAMA Y, YOKOYAMA M, YADA C, et al. Preparation of LiFePO4 thin films by pulsed laser deposition and their electrochemical properties[J]. Electrochemical Solid-State Letters, 2004, 7(10): A340-A342.
    [68] SAUVAGE F, BAUDRIN E, MORCRETTE M, et al. Pulsed laser deposition and electrochemical properties of LiFePO4 thin films[J]. Electrochemical Solid-State Letters, 2004, 7(1): A15-A18.
    [69] RAMANA C V, SMITH R J, HUSSAIN O M, et al. Growth and surface characterization of V2O5 thin films made by pulsed laser deposition[J]. Journal of Vacuum Science & Technology: A, 2004, 22: 2453.
    [70] BOWMAN R M, GREGG J M. VO2 thin films: growth and the effect of applied strain on their resistance[J]. Journal of Materials Science: Materials in Electronics, 1998, 9(3): 187-191.
    [71] ZHAO S, FU Z, QIN Q. A solid-state electrolyte lithium phosphorus oxynitride film prepared by pulsed laser deposition[J]. Thin Solid Films, 2002, 415(1/2): 108-113.
    [72] AHN J K, YOON S G. Characteristics of perovskite (Li0.5La0.5)TiO3 solid electrolyte thin films grown by pulsed laser deposition for rechargeable lithium microbattery[J]. Electrochimica Acta, 2004, 50(2/3): 371-374.
    [73] MARSH A M, HARKNESS S D, QIAN F, et al. Pulsed laser deposition of high quality LiNbO3 films on sapphire substrates[J]. Applied Physics Letters, 1993, 62(9):952.
    [74] AGOSTINELLI J A, BRAUNSTEIN G H, BLANTON T N. Epitaxial LiTaO3 thin films by pulsed laser deposition[J]. Applied Physics Letters, 1993, 63: 123.
    [75] YAMAMOTO S, SUMITA T, SUGIHARUTO, et al. Preparation of epitaxial TiO2 films by pulsed laser deposition technique[J]. Thin Solid Films, 2001, 401(1/2): 88-93.
    [76] DENG J Q, LU Z G, BELHAROUAK I, et al. Preparation and electrochemical properties of Li3Ti5O12 thin film electrodes by pulsed laser deposition[J]. Journal of Power Sources, 2009, 193(2): 816-821.
    [77] YAMADA K, SATO N, FUJINO T, et al. Preparation of LiNiO2 and LiMyNi1-yO2 (M=Co, Al) films by electrostatic spray deposition[J]. Journal of Solid State Electrochemistry, 1999, 3(3): 148-153.
    [78] SHUI J L, YU Y, YANG X F, et al. LiCoPO4-based ternary composite thin-film electrode for lithium secondary battery[J]. Electrochemistry Communications, 2006, 8(7): 1087-1091.
    [79] MA J, QIN Q Z. Electrochemical performance of nanocrystalline LiMPO4 thin-films prepared by electrostatic spray deposition[J]. Journal of Power Sources, 2005, 148: 66-71.
    [80] KUSHIDA K, KURIYAMA K. Sol-gel growth of LiCoO2 films on Si substrates by a spin-coating method[J]. Journal of Crystal Growth, 2002, 237: 612-615.
    [81] PENG Z S, WAN C R, JIANG C Y. Synthesis by sol-gel process and characterization of LiCoO2 cathode materials[J]. Journal of Power Sources, 1998, 72(2): 215-220.
    [82] RHO Y H, KANAMURA K. Li+-ion diffusion in LiCoO2 thin film prepared by the poly (vinylpyrrolidone) sol-gel method[J]. Journal of The Electrochemical Society, 2004, 151(9): A1406-A1411.
    [83] SVEGL F, OREL B, KAUCIC V. Electrochromic properties of lithiated Co-oxide (LixCoO2) and Ni-oxide (Liem>xNiO2) thin films prepared by the sol-gel route[J]. Solar Energy, 2000, 68(6): 523-540.
    [84] PARK Y J, KIM J G, KIM M K, et al. Fabrication of LiMn2O4 thin films by sol-gel method for cathode materials of microbattery[J]. Journal of Power Sources, 1998, 76(1): 41-47.
    [85] RHO Y H, DOKKO K, KANAMURA K. Li+ ion diffusion in LiMn2O4 thin film prepared by PVP sol-gel method[J]. Journal of Power Sources, 2006, 157(1): 471-476.
    [86] HU YQ, DOEFF MM, KOSTECKI R, et al. Electrochemical performance of sol-gel synthesized LiFePO4 in lithium batteries[J]. Journal of the Electrochemical Society, 2004, 151(8): A1279-A1285.
    [87] HSU K F, TSAY S Y, HWANG B J. Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol-gel route[J]. Journal of Materials Chemistry, 2004, 14(17): 2690-2695.
    [88] YANG J S, XU J J. Nonaqueous sol-gel synthesis of high-performance LiFePO4[J]. Electrochemical and Solid-State Letters, 2004, 7(12): A515-A518.
    [89] DOMINKO R, BELE M, GABERSCEK M, et al. Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites[J]. Journal of the Electrochemical Society, 2005, 152(3): A607-A610.
    [90] VIVIER V, FARCY J. PEREIRA-RAMOS J P. Electrochemical lithium insertion in sol-gel crystalline vanadium pentoxide thin films[J]. Electrochimica Acta, 1998, 44(5): 831-839.
    [91] MEULENKAMP E A, KLINKEN W, SCHLATMANN A R. In-situ X-ray diffraction of Li intercalation in sol-gel V2O5 films[J]. Solid State Ionics, 1999, 126(3): 235-244.
    [92] KITAOKA K, KOZUKA H, HASHIMOTO T, et al. Preparation of La0. 5Li0. 5TiO3 perovskite thin films by the sol-gel method[J]. Journal of Materials Science, 1997, 32(8): 2063-2070.
    [93] NASHIMOTO K, CIMA M J. Epitaxial LiNbO3 thin films prepared by a sol-gel process[J]. Materials Letters, 1991, 10(7): 348-354.
    [94] DEIS T A, PHULE P P. Preparation of oriented lithium tantalate thin films using molecularly modified tantalum (V) ethoxide and lithium acetate[J]. Journal of Materials Science Letters, 1992, 11(20): 1353-1355.
    [95] YOKO T, YUASA A, KAMIYA K, et al. Sol-gel-derived TiO2 film semiconductor electrode for photocleavage of water preparation and effects of postheating treatment on the photoelectrochemical behavior[J]. Journal of The Electrochemical Society, 1991, 138(8): 2279-2285.
    [96] RHO Y H, KANAMURA K, FUJISAKI M, et al. Preparation of Li4Ti5O12 and LiCoO2 thin film electrodes from precursors obtained by sol-gel method[J]. Solid State Ionics, 2002, 151(1): 151-157.
    [97] CHO S I, YOON S G. Improvement of discharge capacity of LiCoO2 thin-film cathodes deposited in trench structure by liquid-delivery metalorganic chemical vapor deposition[J]. Applied Physics Letters, 2003, 82(19): 3345-3347.
    [98] CHO S I, YOON S G. Characterization of LiCoO2 thin film cathodes deposited by liquid-delivery metallorganic chemical vapor deposition for rechargeable lithium batteries[J]. Journal of The Electrochemical Society, 2002, 149(12): A1584-A1588.
    [99] FRAGNAUD P, NAGARAJAN R, SCHLEICH D M, et al. Thin-film cathodes for secondary lithium batteries[J]. Journal of Power Sources, 1995, 54(2): 362-366.
    [100] KUYPERS A D, SPEE C, LINDEN J L, et al. Plasma-enhanced CVD of electrochromic materials[J]. Surface and Coatings Technology, 1995, 74/75: 1033-1037.
    [101] WERNBERG A A, GYSLING H J, FILO A J, et al. Epitaxial growth of lithium niobate thin films from a single‐source organometallic precursor using metalorganic chemical vapor deposition[J]. Applied Physics Letters, 1993, 62(9): 946-948.
    [102] XIE H Y, RAJ R. Epitaxial LiTaO3 thin film by pulsed metalorganic chemical vapor deposition from a single precursor[J]. Applied Physics Letters, 1993, 63(23): 3146-3148.
    [103] JUNG H J, PARK M, YOON Y G, et al. Amorphous silicon anode for lithium-ion rechargeable batteries[J]. Journal of Power Sources, 2003, 115:346-351.
    [104] JUNG H J, PARK M, HAN S H, et al. Amorphous silicon thin-film negative electrode prepared by low pressure chemical vapor deposition for lithium-ion batteries[J]. Solid State Communications, 2003, 125:387-390.
    [105] RAUSCH N, BURTE E P. Thin TiO2 films prepared by low pressure chemical vapor deposition[J]. Journal of The Electrochemical Society, 1993, 140(1): 145-149.
    [106] NEUDECKER B J, ZUHR R A, BATES J B. Lithium thin-film batteries with Sn3N4, Zn3N2, and in situ plated Li anodes// The 195th Meeting of the Electrochemical Society. USA: Seattle, 1999: 841-843.
    [107] ZHOU Y N, XUE M Z, FU Z W. Nanostructured thin film electrodes for lithium storage and all-solid-state thin-film lithium batteries[J]. Journal of Power Sources, 2013, 234: 310-332.
    [108] OUDENHOVEN J F M, BAGGETTO L, NOTTEN P H L. All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts[J]. Advanced Energy Materials, 2011,1: 10-33.
    [109] BAGGETTO L, NIESSEN R A H, ROOZEBOOM F, et al. High energy density all-solid-state batteries: a challenging concept towards 3D integration[J]. Advanced Functional Materials, 2008, 18: 1057-1066.
    [110] NOTTEN P H L, ROOZEBOOM F, NIESSEN R A H, et al. 3-D integrated all-solid-state rechargeable batteries[J]. Advanced Materials, 2007, 19: 4564-4567.
    [111] GOLODNITSKY D, NATHAN M, YUFIT V, et al. Progress in three-dimensional (3D) Li-ion microbatteries[J]. Solid State Ionics, 2006, 177(26): 2811-2819.
    [112] NATHAN M, GOLODNITSKY D, YUFIT V, et al. Three-dimensional thin-film Li-ion microbatteries for autonomous MEMS[J]. Journal of Microelectromechanical Systems, 2005, 14(5): 879-885.
    [113] PERRE E, NYHOLM L, GUSTAFSSON T, et al. Direct electrodeposition of aluminium nano-rods[J]. Electrochemistry Communications, 2008, 10(10): 1467-1470.
    [114] LEOPOLD S, SCHUCHERT I U, LU J, et al. Electrochemical deposition of cylindrical Cu/Cu2O microstructures [J]. Electrochimica Acta, 2002, 47(27): 4393-4397.
    [115] WANG C L, JIA G Y, TAHERABADI L H, et al. A novel method for the fabrication of high-aspect ratio C-MEMS structures[J]. Journal of Microelectromechanical Systems, 2005, 14(2):348-358.
    [116] MIN H S, PARK B Y, TAHERABADI L, et al. Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery[J]. Journal of Power Sources, 2008, 178(2): 795-800.
    [117] KIM D H, AHN J H, CHOI W M, et al. Stretchable and foldable silicon integrated circuits[J]. Science, 2008, 320(5875): 507-511.
    [118] GWON H, HONG J, KIM H, et al. Recent progress on flexible lithium rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 538-551.
    [119] ZHOU G M, LI F, CHENG H M. Progress in flexible lithium batteries and future prospects[J]. Energy & Environmental Science, 2014, 7(4): 1307-1338.
    [120] KOO M, PARK K I, LEE S H, et al. Bendable inorganic thin-film battery for fully flexible electronic systems[J]. Nano Letters, 2012, 12(9): 4810-4816.
    [121] SEKITANI T, IBA S, KATO Y, et al. Ultraflexible organic field-effect transistors embedded at a neutral strain position[J]. Applied Physics Letters, 2005, 87(17): 173502.
    [122] SONG S W, CHOI H, PARK H Y, et al. High rate-induced structural changes in thin-film lithium batteries on flexible substrate[J]. Journal of Power Sources, 2010, 195(24): 8275-8279.
    [123] SONG S W, HONG S J, PARK H Y, et al. Cycling-driven structural changes in a thin-film lithium battery on flexible substrate[J]. Electrochemical and Solid-State Letters, 2009, 12(8): A159-A162.
    [124] LEE S H, LIU P, TRACY C E, et al. All-solid-state rocking chair lithium battery on a flexible Al substrate[J]. Electrochemical and Solid-State Letters, 1999, 2(9): 425-427.
    [125] LI N, CHEN Z P, REN W C, et al. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates[J]. Proceedings of the National Academy of Sciences, 2012, 109(43): 17360-17365.
    [126] NAKAZAWA H, SANO K, BABA M. Fabrication by using a sputtering method and charge-discharge properties of large-sized and thin-filmed lithium ion rechargeable batteries[J]. Journal of Power Sources, 2005, 146(1): 758-761.
    [127] PARK Y S, LEE S H, LEE B I, et al. All-solid-state lithium thin-film rechargeable battery with lithium manganese oxide[J]. Electrochemical and Solid-State Letters, 1999, 2(2): 58-59.
    [128] BABA M, KUMAGAI N, FUJITA H, et al. Multi-layered Li-ion rechargeable batteries for a high-voltage and high-current solid-state power source[J]. Journal of Power Sources, 2003, 119: 914-917.
    [129] 陈梅. 利用常温工艺的全固体薄膜锂电池试制成功[J]. 电源技术, 2011, 35:487-488.(CHEN M. Fabricatioin of an all-solid-state thin-film lithium-ion battery prototype using a room temperature process[J]. Chinese Journal of Power Sources, 2011, 35: 487-488.)
    [130] JIMBO T, KIM P, SUU K. Production technology for thin-film lithium secondary battery[J]. Energy Procedia, 2012, 14: 1574-1579.
    [131] JEON J, SHIN Y W, NAM S C, et al. Characterization of all-solid-state thin-film batteries with V2O5 thin film cathodes[J]. Journal of The Electrochemical Society, 2001, 148(4): A318-A322.
    [132] MARTIN M, FAVERJON F. A multilayer semi-industrial vacuum deposition equipment for producing ultrathin batteries[J]. Thin Solid Films, 2001, 398/399:572-574.
    [133] 秦启宗,傅正文,刘文元. 一种原位沉积制备全固态薄膜锂电池的设备和方法:中国,1747217A,2006-03-15.(QIN Q Z, FU Z W, LIU W Y. Methods and in-situ deposition equipment for fabricating all-solid-state thin film lithium batteries: China,1747217A, 2006-03-15.)
    [134] LIU W Y, FU Z W, QIN Q Z. A sequential thin-film deposition equipment for in-situ fabricating all-solid-state thin film lithium batteries[J]. Thin Solid Films, 2007, 515(7): 4045-4048.
  • 加载中
计量
  • 文章访问数:  2022
  • HTML全文浏览量:  49
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-03
  • 修回日期:  2014-09-20
  • 刊出日期:  2014-12-01

目录

    /

    返回文章
    返回