基于应变速率循环法的TA15钛合金超塑性本构方程

谭丽琴 王高潮 甘雯晴 熊城

谭丽琴, 王高潮, 甘雯晴, 熊城. 基于应变速率循环法的TA15钛合金超塑性本构方程[J]. 航空材料学报, 2014, 34(6): 21-27. doi: 10.11868/j.issn.1005-5053.2014.6.002
引用本文: 谭丽琴, 王高潮, 甘雯晴, 熊城. 基于应变速率循环法的TA15钛合金超塑性本构方程[J]. 航空材料学报, 2014, 34(6): 21-27. doi: 10.11868/j.issn.1005-5053.2014.6.002
TAN Li-qin, WANG Gao-chao, GAN Wen-qing, XIONG Cheng. Superplastic Constitutive Relationship of TA15 Titanium Alloy Based on Strain Rate Circulation Method[J]. Journal of Aeronautical Materials, 2014, 34(6): 21-27. doi: 10.11868/j.issn.1005-5053.2014.6.002
Citation: TAN Li-qin, WANG Gao-chao, GAN Wen-qing, XIONG Cheng. Superplastic Constitutive Relationship of TA15 Titanium Alloy Based on Strain Rate Circulation Method[J]. Journal of Aeronautical Materials, 2014, 34(6): 21-27. doi: 10.11868/j.issn.1005-5053.2014.6.002

基于应变速率循环法的TA15钛合金超塑性本构方程

doi: 10.11868/j.issn.1005-5053.2014.6.002
基金项目: 

江西省科技计划重点项目(20141BBE50011)

详细信息
    通讯作者:

    王高潮(1965—), 男, 硕士, 教授, 主要从事航空复杂构件精密成形的研究, (E-mail)wanggaochao@nchu.edu.cn

  • 中图分类号: TG311;V261.3+2

Superplastic Constitutive Relationship of TA15 Titanium Alloy Based on Strain Rate Circulation Method

  • 摘要: 采用应变速率循环法对TA15钛合金进行三组高温超塑性拉伸试验,变形温度区间为850~950℃,应变速率循环区间为510-6~510-4s-1.分析拉伸试验数据后,计算出TA15钛合金动态再结晶激活能Q,结合金相组织分析得出其热变形过程中发生了动态再结晶的结论;并利用Arrhenius模型构建超塑性本构方程,应用origin数据处理软件进行数据分析,求得TA15钛合金高温条件下的超塑性本构方程.运用1stopt软件修正了该本构方程,使其精度达到99.3%.结果表明,TA15钛合金的流动应力对变形温度较为敏感,随着温度的升高,流变应力逐渐减小,软化机制愈发明显,且在900℃附近的超塑性较好,伸长率达到了846%.

     

  • [1] 朱知寿. 我国航空用钛合金技术研究现状及发展[J].航空材料学报, 2014,34(4):44-50.(ZHU Z S. Recent research and development of titanium alloys for aviation application in China[J]. Journal of Aeronautical Materials,2014,34(4):44-50.)
    [2] 申发兰,TA15钛合金高温变形规律研究.南京:南京航空航天大学,2013.(SHEN F L, Study on Hot Deformation Rule of TA15 Titanium Alloy.Nan Jing: University of Nan Jing Aeronautics and Astronautics,2013.)
    [3] 陈洋,裴传虎,李臻熙,等. α+β钛合金在高应变率下得动态力学性能[J].航空材料学报,2013,33(6):8-12.(CHEN Y, PEI C H, LI Z X, et al. The dynamic mechanical properties of α + β titanium alloys at high strain rates [J]. Journal of Aeronautical Materials, 2013,33(6):8-12.)
    [4] 曾立英, 赵永庆, 李丹柯,等.热处理对一种两相钛合金超塑性及组织的影响[J]. 西安工业学院学报, 2005, 25(4): 374-380.(ZENG L Y, ZHAO Y Q, LI D K, et al. Effect of heat treatment on two-phase titanium alloy superplasticity and organizations [J]. Xi'an Polytechnic University, 2005, 25(4): 374-380.)
    [5] FAN X G, YANG H, GAO P F, et al. Prediction of constitutive behavior and microstructure evolution in hot deformation of TA15 titanium alloy [J]. Materials & Design, 2013, 51: 34-42.
    [6] 郭萍, 赵永庆, 洪权,等.加工工艺对TA15合金组织和性能的影响[J].材料热处理学报, 2013, 34(1): 49-52.(GUO P, ZHAO Y Q, HONG Q, et al. Effects of processing on the microstructure and properties of TA15 alloy[J]. Materials and Heat Treatment, 2013, 34(1): 49-52.)
    [7] 于兰兰, 毛小南, 李辉.温度对TA15损伤容限型钛合金疲劳裂纹扩展行为的影响[J].稀有金属快报,2007,26(12):20-23.(YU L L, MAO X N, LI H. Effects of temperature on fatigue crack growth behavior of TA15 damage tolerance limit type titanium alloys[J]. Rare Letters, 2007,26(12):20-23.)
    [8] WANG G C, FU M W, DONG H B,et al. Superplasticity deformation of Ti-6Al-2Zr-1Mo-1V induced by the cyclic change of strain-rate and MaxmSPD[J].Journal of Alloys and Compounds,2010,491:213-217.
    [9] WANG G C, FU M W, CAO C X, et al. Study on the maximum m superplasticity deformation of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy[J]. Materials Science and Engineering A, 2009, 513: 32-41.
    [10] BALASUBRAHMANYAM V V, PRASAD Y V R K. Deformation behavior of beta titanium alloy Ti-10V-4.5Fe-1.5Al in hot upset forging[J]. Materials Science and Engineering: A, 2002, 336: 150-158.
    [11] ZHANG Y S, SUN Y. Investigation on Constitutive Equations for TA15 during hot working[J]. Applied Mechanics and Materials,2012, 184: 1492-1496.
    [12] 李成铭,李萍,赵蒙,等. TA15钛合金高温压缩变形行为与组织研究[J]. 航空材料学报,2013,33(3):25-29.(LI C M, LI P, ZHAO M, et al. Behavior and organization Studies of TA15 titanium alloy during hot compression deformation [J]. Journal of Aeronautical Materials, 2013,33(3):25-29.)
    [13] 沈昌武, 杨合, 孙志超,等. 基于BP 神经网络的TA15 钛合金本构关系建立[J]. 塑性工程学报, 2007, 14(4): 101-104.(CHEN C W, YANG H,SUN Z C, et al. Established constitutive relationship of TA15 titanium based on BP neural network [J]. Journal of Plasticity Engineering, 2007, 14(4): 101-104.)
    [14] QUAN G Z,TONG Y,ZHANG Y W, et al. Constitutive Relationship of TA15 Alloy and its Application in the Hammer Forging Process Simulation [J]. Advanced Materials Research, 2010, 102: 516-520.
    [15] 梁业,郭鸿镇,刘鸣,等. TA15合金高温本构方程的研究[J]. 塑性工程学报, 2008, 15(4): 150-154.(LIANG Y,GUO H Z, LIU M, et al. Research on constitutive equation of TA15 alloy in high temperature [J]. Plasticity Engineering, 2008, 15(4): 150-154.)
    [16] 徐文臣, 单德彬, 李春峰,等. TA15钛合金的动态热压缩行为及其机理研究[J]. 航空材料学报, 2005, 25(4): 10-19.(XU W C,SHAN D B,LI C F, et al. Dynamic thermal compression behavior and mechanism of TA15 titanium [J]. Journal of Aeronautical Materials, 2005, 25(4): 10-19.)
    [17] CAI J, LI F G, LIU T Y, et al. Constitutive equations for elevated temperature flow stress of Ti-6Al-4V alloy considering the effect of strain[J]. Materials and Design, 2011, 32:1144-1151.
    [18] 张小刚, 潘清林, 梁文杰,等.01570铝合金热压缩变形的流变应力本构方程[J].锻压技术,2009,34(1):139-142.(ZHANG X G, PAN Q L, LIANG W J, et al. Constitutive equation of flow stress for 01570 aluminum alloy during hot compression deformation[J]. Forging Technology,2009,34(1):139-142.)
  • 加载中
计量
  • 文章访问数:  1404
  • HTML全文浏览量:  23
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-19
  • 修回日期:  2014-05-31
  • 刊出日期:  2014-12-01

目录

    /

    返回文章
    返回