Effect of Filler Systems on Properties of Fluororubber Vulcanized by Peroxide
-
摘要: 研究了纳米无机填料体系对过氧化物硫化氟橡胶硫化特性、力学性能、热空气老化性能、热传导性能以及热稳定性能的影响,结果表明:与BaSO4,BN和R930相比,三种不同结构形态的碳纳米材料明显延长了氟橡胶的正硫化时间;当硫化橡胶硬度级别相同时,多壁碳纳米管CNTs、石墨和N990对过氧化物硫化氟橡胶补强效果显著,其中CNTs的补强效率最高,添加CNTs可提高氟橡胶的撕裂强度,但严重损害其压缩永久变形性能;添加石墨和N990的氟橡胶可以获得更好的耐空气老化性能和耐高温压缩性能,添加R930耐高温压缩性能最好;石墨和BN有利于氟橡胶的导热性;添加BaSO4的氟橡胶热失重分解温度最高,且质量损失率最小。Abstract: The effect of nano inorganic filler systems on curability, mechanical property, thermal aging property, thermal conductivity and thermal stability of peroxide vulcanization of fluororubber was investigated. The results show that T90 of fluororubbers is delayed with the addition of different morphology of carbon nano-materials compared with BaSO4, BN and R930. The mechanical property and reinforcing efficiency of fluoroelastomer filled by CNTs, graphite and N990 are increased more than the others, when all the vulcanized rubbers possesse the same hardness. CNTs shows the best reinforcing efficiency. Inorganic filler CNTs can increase the tear strength, but it can also result in a higher compression set. Thermal aging property and compression set resistance of fluororubber filled with Graphite and N990 have better performance. Compression set of fluororubber is minimum with the addition of rutile type TiO2(R930). Graphite and BN are benefit to thermal conductivity. Fluororubber with BaSO4 possesses the highest decomposition temperature and the smallest mass loss.
-
表 1 基本配方
Table 1. Basic formulation
Formulation P459 (phr) BaSO4 (volume fraction/%) BN (volume fraction/%) R930 (volume fraction/%) CNTs (volume fraction/%) Graphite (volume fraction/%) N990 (volume fraction/%) TAIC (phr) DBPH (phr) 1 100 13 3 1.5 2 100 10.5 3 1.5 3 100 13.4 3 1.5 4 100 6.8 3 1.5 5 100 12 3 1.5 6 100 36 3 1.5 表 2 不同填料填充氟橡胶的硫化参数
Table 2. Effect of different filler systems on the curing processing parameters of FKM
Sample ML/dNm MH/dNm t10/min t90/min BaSO4 0.21 42.53 2.31 6.20 BN 0.23 47.55 2.32 6.22 R930 0.33 46.41 2.30 5.81 CNTs 1.06 57.12 2.66 10.14 Graphite 0.18 38.94 2.62 8.92 N990 0.30 44.54 2.52 8.00 表 3 无机填料体系对氟橡胶力学性能的影响
Table 3. Effect of inorganic filler systems on mechanical properties of FKM
Sample Hardness(Shore A) 100% Tensile strength/MPa Tensile strength/MPa Elongation /% Tear strength/ (kN·m-1) BaSO4 77 7 14.5 202 13 BN 80 9.8 14.7 189 17 R930 77 10.6 13.5 133 16 CNTs 82 14.8 19.4 159 23 Graphite 80 18.6 20.7 152 19 N990 81 11.8 18.5 170 16 表 4 无机填料对氟橡胶老化性能的影响(250 ℃/24 h in air)
Table 4. Effect of inorganic filler systems on thermal aging properties of FKM(250 ℃/24 h in air)
Sample Hardness change (Shore A) Tensile strength change/% Elongation change/% BaSO4 +1 +35.2 -4.0 BN +2 +15.8 +2.6 R930 +1 +42.2 +19.5 CNTs +2 +14.4 +1.3 Graphite +2 0.0 -9.9 N990 +2 +6.4 +13.3 表 5 不同填料填充氟橡胶的热失重数据
Table 5. TG data of FKM with different filler systems
Sample T5% /℃ T10% /℃ T 20% /℃ T 50% /℃ Δm650 ℃/% BaSO4 410 429 461 483 73 BN 404 420 452 476 85.14 R930 406 420 447 471 83.41 CNTs 399 416 451 474 95.27 Graphite 405 422 457 476 83.39 N990 407 421 454 475 97.36 注:T5%,T 10%,T20%,T 50%,Δm650 ℃ ——分别表示质量损失5%,10%,20%,50%时的温度以及650 ℃时的失重率 -
[1] 曹鸿璋, 刘杰民, 张玉玺. 氟橡胶改性技术研究进展[J]. 橡胶工业, 2014, (3): 187-191. CAO H Z, LIU J M, ZHANG Y X. Progress on modification technology research of fluoroelastomers[J]. China Rubber Industry, 2014(3): 187-191. [2] 刘伯南. 26类氟橡胶技术[J]. 有机氟工业, 2011, (3): 59-64. LIU B N. Technology of fluoroelastomer 26[J]. Organo-Fluorine Industry, 2011(3): 59-64. [3] 陈青, 魏伯荣, 胡小锋. 氟橡胶的改性研究进展[J]. 特种橡胶制品, 2004, 25(2): 57-61. CHEN Q, WEI B R, HU X F. Progress on the modifying research of fluororubber[J]. Special Purpose Rubber Products, 2004, 25(2): 57-61. [4] 徐竹, 马俊辉, 陈军. 不同填料对246型氟橡胶性能的影响[J]. 特种橡胶制品, 2005, 26(6): 21-23. XU Z, MA J H, CHEN J. Influence of different fillers on property of fluoroelastomer 246[J]. Special Purpose Rubber Products, 2005, 26(6): 21-23. [5] 徐竹.填料体系对氟橡胶的性能影响极其表征.四川:四川大学,2006:17. [6] 崔小明. 氟橡胶的改性及应用研究进展[J]. 中国橡胶, 2015, (8): 42-45. CUI X M. Progress on the modifying and application research of fluororubber[J]. China Rubber, 2015(8): 42-45. [7] 方晓波, 黄承亚. 不同填料对氟橡胶性能的影响[J]. 特种橡胶制品, 2008, 29(3): 32-34. FANG X B, HUANG C Y. Influence of different fillers on the properties of fluoro rubber[J]. Special Purpose Rubber Products, 2008, 29(3): 32-34. [8] 陈军, 倪海鹰, 张旭刚. 填料形态及加工工艺与氟橡胶拉伸性能关系[J]. 特种橡胶制品, 2004, 25(3): 17-19. CHEN J, NI H Y, ZHANG X G. Influence of shapes of filler and processing technology on the tensile property of fluoro-rubber[J]. Special Purpose Rubber Products, 2004, 25(3): 17-19. [9] WANG J H, JI C T, YAN Y T. Mechanical and ceramifiable properties of silicone rubber filled with different inorganic fillers[J]. Polymer Degradation and Stability, 2015(121): 149-156. [10] KADER M A, LYU M Y, NAH C. A sdudy on melt processing and thermal properties of fluoroelastomer nanocomposites[J]. Composites Science and Technology, 2006, 66(10): 1431-1443. [11] 肖凤亮,彭兵,杨文良.氟弹性体选用手册[M].北京:化学工业出版社,2007. [12] 施利毅, 姚健, 于福涛. 纳米材料在高性能橡胶开发中的应用进展[J]. 中国橡胶, 2007, 23(23): 32-36. SHI L Y, YAO J, YU F T. Application progress on development of nano materials in high-performance rubber[J]. China Rubber, 2007, 23(23): 32-36. [13] 金文琴.新型有机杂化六方氮化硼及其高性能阻燃双马来酰亚胺树脂的研究.苏州:苏州大学,2014:27. [14] 秦丽丽, 王占京, 侯军. 氮化硼填充导热绝缘复合材料的研究进展[J]. 高分子材料科学与工程, 2013, 29(9): 175-178. QIN L L, WANG Z J, HOU J. Advances in insulating thermal conductive composite filled with BN[J]. Polymer Materials Science and Engineering, 2013, 29(9): 175-178. [15] SICHEL E K, MICLER R E, ABRAHAMS M S. Heat capacity and thermal conductivity of hexagonal pyrolytic boron nitride[J]. Physical Review:B,Condensed Matter, 1976, 13(10): 4607-4611. [16] 周文英, 王子君, 董丽娜. 聚合物/BN导热复合材料研究进展[J]. 合成树脂及塑料, 2015, 32(2): 80-84. ZHOU W Y, WANG Z J, DONG L N. Research progress on polymer/BN thermal conductive composites[J]. China Synthetic Resin and Plastics, 2015, 32(2): 80-84. -