电致变色技术研究进展和应用

韦友秀 陈牧 刘伟明 厉蕾 张官理 颜悦

韦友秀, 陈牧, 刘伟明, 厉蕾, 张官理, 颜悦. 电致变色技术研究进展和应用[J]. 航空材料学报, 2016, 36(3): 108-123. doi: 10.11868/j.issn.1005-5053.2016.3.012
引用本文: 韦友秀, 陈牧, 刘伟明, 厉蕾, 张官理, 颜悦. 电致变色技术研究进展和应用[J]. 航空材料学报, 2016, 36(3): 108-123. doi: 10.11868/j.issn.1005-5053.2016.3.012
Youxiu WEI, Mu CHEN, Weiming LIU, Lei LI, Guanli ZHANG, Yue YAN. Recent Process and Application of Electrochromism[J]. Journal of Aeronautical Materials, 2016, 36(3): 108-123. doi: 10.11868/j.issn.1005-5053.2016.3.012
Citation: Youxiu WEI, Mu CHEN, Weiming LIU, Lei LI, Guanli ZHANG, Yue YAN. Recent Process and Application of Electrochromism[J]. Journal of Aeronautical Materials, 2016, 36(3): 108-123. doi: 10.11868/j.issn.1005-5053.2016.3.012

电致变色技术研究进展和应用

doi: 10.11868/j.issn.1005-5053.2016.3.012
详细信息
    通讯作者:

    颜悦(1966-),男,博士,研究员,主要从事透明件和透明导电薄膜研究,(E-mail)yue.yan@biam.ac.cn

  • 中图分类号: O484

Recent Process and Application of Electrochromism

  • 摘要: 经过多年的研究和发展,电致变色技术已被应用于建筑窗、汽车防眩后视镜、飞机舷窗等领域。本文概述了电致变色器件的结构、工作原理、材料分类、以及特性要求,阐述了电致变色薄膜的制备方法和实现应用的技术要求,并总结分析了国内外发展状况和最新进展。将电致变色应用在能源领域达到节约能耗的效果,极具社会意义和商业价值,是其发展过程的里程碑。目前,探索时间成本和经济效益双赢的技术路线和工艺流程,拓展应用领域(与其他技术相结合)并开发出相关的实用性产品将为电致变色技术重要的发展趋势。具有工业前景的湿化学方法有降低成本,提高效率的优势,将成为实现该项技术普及化的研究热点,另外,电解质层材料的研发和制备也会成为研究发展中的核心技术。

     

  • 图  1  ECD的典型结构示意图

    Figure  1.  Typical structure illustration of ECD

    图  2  紫精材料氧化还原过程反应方程式

    Figure  2.  Redox formula of viologen

    图  3  聚合物电致变色材料在不同氧化状态下的电子能级示意图(a)和以杂环结构为例说明影响颜色和氧化电势的因素(b)[47]

    Figure  3.  Electronic energy bands diagram of polymer under different oxidized conditions (a) and factors tuning color and oxidation potential using simple heterocycles as an example (b)[47]

    图  4  不同颜色的共聚物的重复结构单元和吸收光谱图

    Figure  4.  Repeat unit structure,photographs in neutral and oxidized states and absorption spectra in fully neutralized states for the polymer films[51]

    图  5  Sage Glass电致变色窗在着褪色及中间状态下的透过率曲线(a)与太阳光辐射光谱图及人眼敏感波段(b)

    Figure  5.  Transmittance spectra of Sage Glass in clear,fully colored and two intermediate states (a) and solar irradiance spectrum during clear weather and at sea level and the sensitivity of human eyes (b)

    图  6  调节PB,Co-PBA,Ni-PBA的混合比例得到的不同的颜色

    Figure  6.  Hue circles produced by dichromic tuning of PB,Co-PBA,and Ni-PBA ink

    图  7  电致变色技术的应用举例

    Figure  7.  Examples of electrocromic application

    图  8  电致变色器件着色和褪色状态的图片(北京航空材料研究院)

    Figure  8.  Photographs of ECD in colored and bleached states (BIAM)

    图  9  ITO纳米晶粒得失电子的微观示意图和红外区域的透过率变化曲线[96]

    Figure  9.  Microscopic diagram of electron extracted and injected process in ITO nanocrystals (a,b) and associated optical changes (c,d)[96]

    图  10  柔性压力传感器和电致变色器件组合的器件示意图,以及器件的压力变色响应实物图[99]

    Figure  10.  Schematic layout of intergrated stretchable pressure sensor and electrochromic device and the color change related to the pressure[99]

    图  11  有机电致变色纤维器件结构图(左)和所使用的聚合物变色材料的分子结构(右)[100]

    Figure  11.  Schematic of the all-organic electrochromic spandex device (left) and structure of used polymer electrochromic material (right)[100]

    图  12  柔性电致变色纤维器件的颜色变化实物图 (a)喷覆银的导电纤维和PET-ITO为电极材料,PB为电致变色材料;(b)PEDOT纳米纤维为电极材料[101-102]

    Figure  12.  Color-changed photographs of flexible electrochromic fabric device (a) using silver-coated fabric and PEI-ITO as the electrode and Prussian blue as the electrochromic material; (b)PEDOT nanofibers as the elelctrode[101-102]

    图  13  光驱动电致变色器件工作的原理图,在开路(a)和短路(b)状态下,器件发生颜色变化

    Figure  13.  Working principle of photoelectrochromic device,changes of decive colors reversibly under open-circuit (a) and short-circuits (b) conditions

    表  1  可应用的电致变色窗的生产商和各项指标

    Table  1.   Data for commercially available electrochromic windows for building applications[92]

    ManufacturerSize/cm2UTsolTvisSFCycle
    Sage Electrochromics,Inc.108×1501.650.41-0.0150.48-0.09105
    Econtrol-Glass GmbH and Co.KG120×1201.10.05-0.150.36-0.1210-year guarantee
    0.50.45-0.14
    Gesimat GmbH80×1200.52-0.060.78-0.0810-year guarantee
    U:the heat transfer factor;Tsol: solar transmittance;Tvis: visible transmittance; SF: solar factor
    下载: 导出CSV
  • [1] GRANQVIST C G. Electrochromism and smart window design[J]. Solid State Ionics, 1992, 53:479-489.
    [2] AZENS A, AVENDANO E, GRANQVIST C G. Electrochromic materials and their applications in foil-based devices[J]. Advanced Optical Devices, Technologies, and Medical Applications, 2002, 5123:185-195.
    [3] DEB S K. A novel electrophotographic system[J]. Applied Optics, 1969, 3:192-195.
    [4] PALATNIK L S, MALYUK Y I, BELOZEROV V V. An X-ray diffraction study of the mechanism of reversible electrochemical dielectric semiconductor transformations in Nb2O5[J]. Doklady Akademii. Nauk SSSR, 1974, 215:1182-1185.
    [5] BALOUKAS B, LAMARRE, J-M, MARTINU L. Active metameric security devices using an electrochromic material[J]. Applied Optics, 2011, 50:C41-C49.
    [6] SVENSSON J S E M, GRANQVIST C G. Electrochromic coatings for "smart windows"[J]. Solar Energy Materials and Solar Cell, 1985, 12:391-402.
    [7] SVENSSON J S E M, GRANQVIST C G. Electrochromic tungsten-oxide films for energy-efficient windows[J]. Solar Energy Materials and Solar Cell, 1984, 11:29-34.
    [8] LAMPERT C M. Electrochromic materials and devices for energy-efficient windows[J]. Solar Energy Materials and Solar Cell, 1984, 11:1-27.
    [9] SVENSSON J S E M, GRANQVIST C G. Electrochromic coatings for smart windows[J]. Solar Energy Materials, 1985, 12(6):391-402.
    [10] SVENSSON J S E M, GRANQVIST C G. Electrochromic coatings for smart Windows[J]. Solar Energy Materials and Solar Cell, 1985, 12:391-402.
    [11] UNEP. Buildings and climate change:status, challenges and opportunities[R]. Paris, France:United Nations Environment Programme,2007.
    [12] GLICKSMAN L R. Energy efficiency in the built environment[J]. Physics Today, 2008, 61:35-40.
    [13] RICHTER B, GOLDSTON D, CRABTREE G, et al. How america can look within to achieve energy security and reduce global warming[J]. Reviews of Modern Physics, 2008, 80:S1-S107.
    [14] ARSENAULT H, HÉBERT M, DUBOIS, M-C. Effects of glazing colour type on perception of daylight quality, arousal, and switch-on patterns of elec-tric light in office rooms[J]. Building and Environment, 2012, 56:223-231.
    [15] LEE E S, DIBARTOLOMEO D L, KLEMS J H, et al. Monitored energy performance of electrochromic windows controlled for daylight and visual comfort[J]. ASHRAE Transactions 2006, 112:122-141.
    [16] MARKS A M. Electrooptical characteristics of dipole suspensions[J]. Appl Optics, 1969, 8:1397-1412.
    [17] KAHR B, FREUDENTHAL J, PHILLIPS S, et al. Herapathite[J]. Science, 2009, 324:1407-1407.
    [18] VERGAZ R, BARRIOS D, PENA J M S, et al. Electro-optical analysis of PEDOT symmetrical electrochromic devices[J]. Solar Energy Materials and Solar Cells, 2008, 92:107-111.
    [19] GARDINER D J, MORRIS S M, COLES H J. High-efficiency multistable switchable glazing using smectic A liquid crystals[J]. Solar Energy Materials and Solar Cells 2009, 93:301-306.
    [20] LEE E S, DIBARTOLOMEO D L, SELKOWITZ S E. Daylighting control performance of a thin-film ceramic electrochromic window:Field study results[J]. Energ Buildings, 2006, 38:30-44.
    [21] NATH P, BUNSHAH R F, BASOL B M, et al. Electrical and optical properties of In2O3:Sn films prepared by activated reactive evaporation[J]. Thin Solid Films, 1980, 72:463-468.
    [22] KOH S K, HAN Y G, LEE J H, et al. Material properties and growth control of undoped and Sn-doped In2O3 thin films prepared by using ion beam technologies[J]. Thin Solid Films, 2006, 496:81-88.
    [23] ABDUEV A KH, AKHMEDOV A K, ASVAROV A SH. The structural and electrical properties of Ga-doped ZnO and Ga,B-codoped ZnO thin films:the effects of additional boron impurity[J]. Solar Energy Materials and Solar Cell, 2007, 91:258-260.
    [24] AGURA H, SUZUKI A, MATSUSHITA T, et al. Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition[J]. Thin Solid Films, 2003, 445:263-267.
    [25] PARK S-M, IKEGAMI T, EBIHARA K. Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition[J]. Thin Solid Films, 2006, 513:90-94.
    [26] BAE J W, LEE S W, YEOM G Y. Doped-fluorine on electrical and optical properties of tin oxide films grown by ozone-assisted thermal CVD[J]. Journal of the Electrochemical Society, 2007, 154:D34-D37.
    [27] FRENNING G, ENGELMARK F, NIKLASSON G A, et al. Li conduction in sputtered amorphous Ta2O5[J]. Journal of the Electrochemical Society, 2001, 148:A418-A421.
    [28] YOO S J, LIM J W, SUNG Y-E. Improved electrochromic devices with an inorganic solid electrolyte protective layer[J]. Solar Energy Materials and Solar Cell, 2006, 90:477-484.
    [29] YANG H, WANG C, DIAO X, et al. A new all-thin-film electrochromic device using LiBSO as the ion conduct-ing layer[J]. Journal of Physics D:Applied Physics, 2008, 41:115301-115305.
    [30] NGUYEN C A, ARGUN A A, HAMMOND P T, et al. Layer-by-layer assembled solid polymer electrolyte for electrochromic devices[J]. Journal of Materials Chemistry, 2011, 23:2142-2149.
    [31] NGUYEN C A, XIONG S X, MA J, et al. Toward electrochromic device using solid electrolyte with polar polymer host[J]. Journal of Physical Chemstry B, 2009, 113:8006-8010.
    [32] AVELLANEDA C O, VIEIRA D F, AL-KAHLOUT A, et al. All solid-state electrochromic devices with gelatin-based electrolyte[J]. Solar Energy Materials and Solar Cells, 2008, 92:228-233.
    [33] ZHOU D, ZHOU R, CHEN C X, et al. Non-volatile polymer electrolyte based on poly(propylenecarbonate), ionic liquid, and lithium perchlorate for electrochromic devices[J]. Journal of Physical Chemstry B, 2013, 117:7783-7789.
    [34] PÉREZ L C, BRAND? O L, SOUSA J M, et al. Segmented polymer electrolyte membrane fuel cells-a review[J]. Renewable and Sustainable Energy Reviews, 2011, 15:169-185.
    [35] DESAI S, SHEPHERD R L, INNIS P C, et al. Gel electrolytes with ionic liquid plasticiser for electrochromic devices[J]. Electrochimica Acta, 2011, 56:4408-4413.
    [36] ARGUN A A, CIRPAN A, REYNOLDS J R. The first truly all-polymer electrochromic devices[J]. Advanced Materials, 2003, 16:1338-1341.
    [37] SYDAM R, DEEPA M, SRIVASTAVA A K. Electrochromic device response controlled by an insitu poly-merized ionic liquid based gel electrolyte[J]. RSC Advanced, 2012, 2:9011-9021.
    [38] COSTA C, PEREIRA S, CORREIA N, et al. Study of electrochromic devices with nanocom-posites polymethacrylate hydroxyethylene resin based electrolyte[J]. Polymer for Advanced Technologies, 2012, 23:791-795.
    [39] GONG Y F, FU X K, ZHANG S P, et al. Preparation of a star network PEG-based gel polymer electrolyte and its application to electrochromic devices[J]. Chinese Journal of Chemistry, 2007, 25:1743-1747.
    [40] SARICIFTCI N S, MEHRING M, NEUGEBAUER N. In situ studies on the structural mechanism of zwitter-viologen system during electrochemical charge-transfer reactions[J]. Synthetic Metals, 1991, 41/42/43:2971-2971.
    [41] SLIWA W, BACHOWSKA B, ZELICHOWICZ N. Chemistry of viologens[J]. Heterocycles, 1991, 32:2241-2273.
    [42] KAIFER A E, BARD A J. Micellar effects on the reductive electrochemistry of methylviologen[J]. Journal of Physical Chemistry B, 1985, 89:4876-4880.
    [43] ČÁRSKY P, HVNIG S, SCHEUTZOW D, et al. Theoretical study of redox equilibria[J]. Tetrahedron, 1969, 25:4781-4796.
    [44] WATANABE T, HONDO K. Measurement of the extinction coefficient of the methyl viologen cation radical and the efficiency of its formation by semiconductor photocatalysis[J]. Journal of Physics and Chemistry, 1982, 86:2617-2619.
    [45] MORTIMER R J. Organic electrochromic materials[J]. Electrochimica Acta, 1999, 44:2971-2981.
    [46] MORTIMER R J, DYER A L, REYNOLDS J R. Electrochromic organic and polymeric materials for display applications[J]. Displays, 2006, 27:2-18.
    [47] BEAUJUGE P M, REYNOLDS J R. Color control in π-conjugated organic polymers for use in electrochromic devices[J]. Chemical Reviews, 2010, 110:268-320.
    [48] DYER A L, REYNOLDS J R. Electrochromism in conjugated conducting polymers[M][C]//Handbook of Conducting Polymers. Boca Raton, USA:CRC Press, 2007.
    [49] DYER A L, CRAIG M R, BABIARZ J E, et al. Orange and red to transmissive electrochromic polymers based on electron-rich dioxythiophenes[J]. Macromolecules, 2010, 43(10):4460-4467.
    [50] GUNBAS G, TOPPARE L. Electrochromic conjugated polyhetero-cycles and derivatives-highlights from the last decade towards realization of long lived aspirations[J]. Chemical Communication, 2012, 48:1083-1101.
    [51] DYER A L, HOMPSON E J, REYNOLDS J R. Completing the color palette with spray-processable polymer electrochromics[J]. ACS Applied Materials and Interfaces, 2011, 3:1787-1795.
    [52] AMB C M, KERSZULIS J A, HOMPSON E J, et al. Propylenedioxythiophene (ProDOT)-phenylene copolymers allow a yellow-to-transmissive electrochrome[J]. Polymer Chemistry, 2011, 2:812-814.
    [53] KERSZULIS J A, AMB C, DYER A, et al. Follow the yellow brick road-structural optimization of vibrant yellow-to-transmissive electrochromic conjugated polymers[J]. Macromolecules, 2014, 47:5462-5469.
    [54] DYER A L, CRAIG M R, BABIARZ J E, et al. Orange and red to transmissive electrochromic polymers based on electron-rich dioxythio-phenes[J]. Macromolecules, 2010, 43:4460-4467.
    [55] LI M, PATRA A, SHEYNIN Y, et al. Hexyl-derivatized poly(3,4-ethylenedioxyselenophene):novel highly stable organic elec-trochromic material with high contrast ratio, high coloration efficiency, and low-switching voltage.[J]. Advanced Materials, 2009, 21:1707-1711.
    [56] OZKUT M I, ATAK S, ONAL A M, et al. A blue to highly transmissive soluble elec-trochromic polymer based on poly(3,4-propylenedioxyselenophene) with a high stability and coloration efficiency[J]. Journal of Materials Chemistry, 2011, 21:5268-5272.
    [57] SONMEZ G, SONMEZ H B, SHEN C K F, et al. A processable green polymeric electrochromic[J]. Macromolecules, 2005, 38:669-675.
    [58] GUNBAS G E, DURMUS A, TOPPARE L. Could green be greener? Novel donor-acceptor-type electrochromic polymers:towards excellent neutral green materials with exceptional transmissive oxidized states for completion of RGB color space[J]. Advanced Materials, 2008, 20(4):691-695.
    [59] BEAUJUGE P M, ELLINGER S, REYNOLDS J R. Spray process-able green to highly transmissive electrochromics via chemically polymerizable donor-acceptor heterocyclic pentamers[J]. Advanced Materials, 2008, 20(14):2772-2776.
    [60] SHI P J, AMB C M, KNOTT E P, et al. Broadly absorbing black to transmissive switching electrochromic polymers[J]. Advanced Materials, 2010, 22(44):4949-4953.
    [61] ICLI M, PAMUK M, ALGI F, et al. A new soluble neutral state black electrochromic copolymer via a donor-acceptor approach[J]. Organic Electronics, 2010, 11(7):1255-1260.
    [62] DEB S K. A novel electropho-tographic system[J]. Appl Opt Suppl, 1969, 3:192-195.
    [63] SVENSSON J S E M, GRANQVIST C G. Electrochromic hydrated nickel oxide coatings for energy efficient windows:optical properties and coloration mechanism[J]. Applied Physical Letters, 1986, 49:1566-1568.
    [64] WEI Y X, LI M, ZHENG J M, et al. Structural characterization and electrical and optical properties of V2O5 films prepared via ultrasonic spraying[J]. Thin Solid Films, 2013, 534:446-451.
    [65] VERMA A, SAMANTA S B, MEHRA N C, et al. Sol-gel derived nanocrystalline CeO(2)-TiO(2) coatings for electrochromic windows[J]. Solar Energy Materials and Solar Cells, 2005, 86:85-103.
    [66] GRANQVIST C G. Electrochromics for smart windows:Oxide-based thin films and devices[J]. Thin Solid Films 2014, 564:1-38.
    [67] NEFF V D. Electrochemical oxidation and reduction of thin-films of prussian blue[J]. Journal of the Electrochemical Society, 1978, 125:886-887.
    [68] ROIG A, NAVARRO J, GARCIA J J, et al. Voltammetric study on the stability of deposited prussian blue films against successive potential cycling[J]. Electrochimica Acta, 1994, 39:437-442.
    [69] ITAYA K, UCHIDA I, NEFF V D. Electrochemistry of polynuclear transition-metal cyanides-prussian blue and its analogs[J]. Accounts of Chemical Research, 1986, 19:162-168.
    [70] DEMIRI S, NAJDOSKI M, VELEVSKA J. A simple chemical method for deposition of electrochromic Prussian blue thin films[J]. Materials Research Bulletin, 2011, 46:2484-2488.
    [71] SIPERKO L M, KUWANA T. Electrochemical and spectroscopic studies of metal hexacyanoferrate films 2:cupric hexacyanoferrate and Prussian blue layered films[J]. Journal of Electrochemical Society, 1986, 133:2439-2440.
    [72] JOSEPH J, GOMATHI H, PRABHAKARA RAO G. Electro-chemical characteristics of thin films of nickel hexacyanoferrate formed on carbon substrates[J]. Electrochimica Acta, 1991, 36:1537-1541.
    [73] JOSEPH J, GOMATHI H, PRABHAKARA RAO G. Electrodes modified with cobalt hexacyanoferrate[J]. Journal of Electroanalytical Chemistry, 1991, 304:263-269.
    [74] WILDE R E, GHOSH S N, MARSHALL B J. The Prussian blues[J]. Inorganic Chemistry, 1970, 9:2512-2516.
    [75] JAYALAKSHMI M, SCHOLZ F. Performance characteristics of zinc hexacyanoferrater/prussian blue and copper hexacyanoferrater/prussian blue solid state secondary cells[J]. Journal of Power Sources, 2000, 91:217-223.
    [76] KULESZA P J, FASZYNSKA M. Indium(III)-hexacyanoferrate(III,II) as an inorganic material analogous to redox polymers for modification of electrode surfaces[J]. Electrochimica Acta, 1989, 34:1749-1753.
    [77] AKIHITO G, HIROAKI U, MANABU I, et al. Simple synthesis of three primary colour nanoparticle inks of Prussian blue and its analogues[J]. Nanotechnology, 2007, 18:345609-345615.
    [78] BALZANI V, JURIS A, VENTURI M, et al. Luminescent and redox-active polynuclear transition-metal complexes[J]. Chemical Reviews, 1996, 96:759-833.
    [79] KAIM W. Concepts for metal complex chromophores absorbing in the near infrared[J]. Coordination Chemistry Reviews, 2011, 255:2503-2513.
    [80] YAO C J, YAO J, ZHONG Y W. Electronic communication between two amine redox centers bridged by a bis(terpyridine)ruthenium(II) complex[J]. Inorganic Chemistry, 2011, 50:6847-6849.
    [81] KUMAR A, SINGH P, KULKARNI N, et al. Structural and optical studies of nanocrystalline V2O5 thin films[J]. Thin Solid Films, 2008, 516:912-918.
    [82] PRODIUS D, MACAEV F, MEREACRE V, et al. Synthesis and characterization of {Fe2CuO} clusters as precursors for nanosized catalytic system for Biginelli reaction[J]. Inorganic Chemistry Communications, 2009, 12:642-645.
    [83] WILLINGER M G, NERI G, RAUWEL E, et al. Vanadium oxide sensing layer grown on carbon nanotubes by a new atomic layer deposition process[J]. Nano Letters, 2008, 8:4201-4204.
    [84] KIM H, LEE H B R, MAENG W J. Applications of atomic layer deposition to nanofabrication and emerging nanodevices[J]. Thin Solid Films, 2009, 517:2563-2580.
    [85] BOUZIDI A, BENRAMDANE N, NAKRELA A, et al. First synthesis of vanadium oxide thin films by spray pyrolysis technique[J]. Materials Science and Engineering:B-Solid, 2002, 95:141-147.
    [86] CHRONAKIS I S. Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process-a review[J]. Journal of Materials Process Technology, 2005, 167:283-293.
    [87] CHEN J J, VACCHIO M J, WANG S J, et al. The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications[J]. Solid State Ionics, 2008, 178:1676-1693.
    [88] OZER N. Electrochemical properties of sol-gel deposited vanadium pentoxide films[J]. Thin Solid Films, 1997, 305:80-87.
    [89] DE ANDRADE I C Jr, ZHANG R, KANICKI J, et al. Properties of electrodeposited WO3 thin films[J]. Molecular Crystals and Liquid Crystals, 2014, 604:71-83.
    [90] MONK P M S, MORTIMER R J, ROSSEINSKY D R. Electrochromism-fundamentals and applications[M]. Weinheim (Federal Republic of Germany):VCH Verlagsgesellschaft mbH, 1995.
    [91] GRANQVIST C G. Oxide electrochromics:An introduc tion to devices and materials[J]. Solar Energy Materials and Solar Cells, 2012, 99:1-13.
    [92] BAETENS R, JELLE B P, GUSTAVSEN A. Properties, requirement s and possibilit ies of smart windows for dynamic daylight and solar energy control in buildings:a state-of-the-art review[J]. Solar Energy Materials and Solar Cells, 2010, 94:87-105.
    [93] LLORDES A, GARCIA G, GAZQUEZ J, et al. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites[J]. Nature, 2013, 500:323-326.
    [94] PFLUGHOEFFT M, WELLER H. Spectroelectrochemical analysis of the electrochromism of antimony-doped nanoparticulate tin-dioxide electrodes[J]. The Journal of Physical Chemistry B, 2002, 106:10530-10534.
    [95] SAKAMOTO A, YAMAMOTO S. Glass-ceramics:engineering principles and applications[J]. International Journal of Applied Glass Science, 2010, 1:237-247.
    [96] RUNNERSTROM E L, LLORDES A, LOUNIS S D, et al. Nanos-tructured electrochromic smart windows:traditional materials and NIR-selective plasmonic nanocrystals[J]. Chemical Communications, 2014, 50:10555-10572.
    [97] KANEHARA M, KOIKE H, YOSHINAGA T, et al. Indium tin oxide nanoparticles with composition-ally tunable surface plasmon resonance frequencies in the near-IR region[J]. Journal of American Chemistry Society, 2009, 131:17736-17737.
    [98] GARCIA G, BUONSANTI R, RUNNERSTROM E L, et al. Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals[J]. Nano Letters, 2011, 11:4415-4420.
    [99] CHOU H H, NGUYEN A, CHORTOS A, et al. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing[J]. Nature Communications, 2015,6:8011.
    [100] INVERNALE M A, DING Y, SOTZING G A. All-organic electrochromic spandex[J]. ACS Applied Materials and Interfaces, 2010, 2:296-300.
    [101] MEUNIER L, KELLY F M, COCHRANE C, et al. Flexible displays for smart clothing:part II:electrochromic displays[J]. Indian Journal of Fibre andTextile Research, 2011, 36:429-435.
    [102] LAFORGUE A. Electrically con-trolled colour-changing textiles using the resistive heating properties of PEDOT nanofibers[J]. Journal of Materials Chemistry, 2010, 20:8233-8235.
    [103] BECHINGER C, FERRERE S, ZABAN A, et al. Photoelectrochromic windows and displays[J]. Nature, 1996, 383:608-610.
    [104] KRAŠOVEC U O, TOPIČ M, GEORG A, et al. Preparation and characterisation of nano-structured WO3-TiO2 layers for photoelec-trochromic devices[J]. Journal of Sol-Gel Science and Technology, 2005, 36:45-52.
    [105] LEFTHERIOTIS G, SYRROKOSTAS G, YIANOULIS P. Partly covered photoelectrochromic devices with enhanced coloration speed and efficiency[J]. Solar Energy Materials and Solar Cells, 2012, 96:86-92.
    [106] LIAO J Y, HO K C. A photo-electrochromic device using a PEDOT thin film[J]. Journal of New Materials for Electrochemical System, 2005, 8:37-47.
    [107] HECHAVARRÍA L, MENDOZA N, RINCÓN M E, et al. Photoelectrochromic performance of tungsten oxide based devices with PEG-titanium complex as solvent-free electrolytes[J]. Solar Energy Materials and Solar Cells, 2012, 100:27-32.
    [108] WU J J, HSIEH M D, LIAO W P, et al. Fast-switching photovoltachromic cells with tunable transmittance[J]. ACS Nano, 2009, 3:2297-2303.
    [109] ZHANG F F, LI B Z, ZHENG J M, et al. Facile fabrication of micro-nano structured triboelectric nanogenerator with high electric output[J]. Nanoscale Research Letters, 2015, 10:298-304.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  9482
  • HTML全文浏览量:  3437
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-19
  • 修回日期:  2016-03-24
  • 刊出日期:  2016-06-01

目录

    /

    返回文章
    返回