Recent Process and Application of Electrochromism
-
摘要: 经过多年的研究和发展,电致变色技术已被应用于建筑窗、汽车防眩后视镜、飞机舷窗等领域。本文概述了电致变色器件的结构、工作原理、材料分类、以及特性要求,阐述了电致变色薄膜的制备方法和实现应用的技术要求,并总结分析了国内外发展状况和最新进展。将电致变色应用在能源领域达到节约能耗的效果,极具社会意义和商业价值,是其发展过程的里程碑。目前,探索时间成本和经济效益双赢的技术路线和工艺流程,拓展应用领域(与其他技术相结合)并开发出相关的实用性产品将为电致变色技术重要的发展趋势。具有工业前景的湿化学方法有降低成本,提高效率的优势,将成为实现该项技术普及化的研究热点,另外,电解质层材料的研发和制备也会成为研究发展中的核心技术。Abstract: Based on the research and development of electrochromism, its commercial applications have been realized in the areas of building windows, car rear-view mirrors and aircraft windows. In this paper, constructions, material category, working principles and characteristic requirements of electrochromic device were to described in details. Preparing methods of electrochromic films and technologies requirements for practicality were listed. The status of electrochromic technologies on commercialization and latest research were also summarized and analyzed. Electrochromism has great commercial potential and important social value for green and energy saving, which is the milestone in its developing process. At present, the trend of electrochromic technology is focused on seeking the technical route and process of saving time and cost, exploiting its application areas by combining other technologies and developing practical products. Wet chemical methods with industrial prospect have advantages of lowering cost and increasing efficiency, and can be a research hotspot for popularizing electrochromic technology. Moreover, the development and preparation of electrolyte layer will be the core technology in the future.
-
图 4 不同颜色的共聚物的重复结构单元和吸收光谱图
Figure 4. Repeat unit structure,photographs in neutral and oxidized states and absorption spectra in fully neutralized states for the polymer films[51]
图 12 柔性电致变色纤维器件的颜色变化实物图 (a)喷覆银的导电纤维和PET-ITO为电极材料,PB为电致变色材料;(b)PEDOT纳米纤维为电极材料[101-102]
Figure 12. Color-changed photographs of flexible electrochromic fabric device (a) using silver-coated fabric and PEI-ITO as the electrode and Prussian blue as the electrochromic material; (b)PEDOT nanofibers as the elelctrode[101-102]
表 1 可应用的电致变色窗的生产商和各项指标
Table 1. Data for commercially available electrochromic windows for building applications[92]
Manufacturer Size/cm2 U Tsol Tvis SF Cycle Sage Electrochromics,Inc. 108×150 1.65 0.41-0.015 0.48-0.09 105 Econtrol-Glass GmbH and Co.KG 120×120 1.1 0.05-0.15 — 0.36-0.12 10-year guarantee 0.5 0.45-0.14 — — Gesimat GmbH 80×120 — 0.52-0.06 0.78-0.08 — 10-year guarantee U:the heat transfer factor;Tsol: solar transmittance;Tvis: visible transmittance; SF: solar factor -
[1] GRANQVIST C G. Electrochromism and smart window design[J]. Solid State Ionics, 1992, 53:479-489. [2] AZENS A, AVENDANO E, GRANQVIST C G. Electrochromic materials and their applications in foil-based devices[J]. Advanced Optical Devices, Technologies, and Medical Applications, 2002, 5123:185-195. [3] DEB S K. A novel electrophotographic system[J]. Applied Optics, 1969, 3:192-195. [4] PALATNIK L S, MALYUK Y I, BELOZEROV V V. An X-ray diffraction study of the mechanism of reversible electrochemical dielectric semiconductor transformations in Nb2O5[J]. Doklady Akademii. Nauk SSSR, 1974, 215:1182-1185. [5] BALOUKAS B, LAMARRE, J-M, MARTINU L. Active metameric security devices using an electrochromic material[J]. Applied Optics, 2011, 50:C41-C49. [6] SVENSSON J S E M, GRANQVIST C G. Electrochromic coatings for "smart windows"[J]. Solar Energy Materials and Solar Cell, 1985, 12:391-402. [7] SVENSSON J S E M, GRANQVIST C G. Electrochromic tungsten-oxide films for energy-efficient windows[J]. Solar Energy Materials and Solar Cell, 1984, 11:29-34. [8] LAMPERT C M. Electrochromic materials and devices for energy-efficient windows[J]. Solar Energy Materials and Solar Cell, 1984, 11:1-27. [9] SVENSSON J S E M, GRANQVIST C G. Electrochromic coatings for smart windows[J]. Solar Energy Materials, 1985, 12(6):391-402. [10] SVENSSON J S E M, GRANQVIST C G. Electrochromic coatings for smart Windows[J]. Solar Energy Materials and Solar Cell, 1985, 12:391-402. [11] UNEP. Buildings and climate change:status, challenges and opportunities[R]. Paris, France:United Nations Environment Programme,2007. [12] GLICKSMAN L R. Energy efficiency in the built environment[J]. Physics Today, 2008, 61:35-40. [13] RICHTER B, GOLDSTON D, CRABTREE G, et al. How america can look within to achieve energy security and reduce global warming[J]. Reviews of Modern Physics, 2008, 80:S1-S107. [14] ARSENAULT H, HÉBERT M, DUBOIS, M-C. Effects of glazing colour type on perception of daylight quality, arousal, and switch-on patterns of elec-tric light in office rooms[J]. Building and Environment, 2012, 56:223-231. [15] LEE E S, DIBARTOLOMEO D L, KLEMS J H, et al. Monitored energy performance of electrochromic windows controlled for daylight and visual comfort[J]. ASHRAE Transactions 2006, 112:122-141. [16] MARKS A M. Electrooptical characteristics of dipole suspensions[J]. Appl Optics, 1969, 8:1397-1412. [17] KAHR B, FREUDENTHAL J, PHILLIPS S, et al. Herapathite[J]. Science, 2009, 324:1407-1407. [18] VERGAZ R, BARRIOS D, PENA J M S, et al. Electro-optical analysis of PEDOT symmetrical electrochromic devices[J]. Solar Energy Materials and Solar Cells, 2008, 92:107-111. [19] GARDINER D J, MORRIS S M, COLES H J. High-efficiency multistable switchable glazing using smectic A liquid crystals[J]. Solar Energy Materials and Solar Cells 2009, 93:301-306. [20] LEE E S, DIBARTOLOMEO D L, SELKOWITZ S E. Daylighting control performance of a thin-film ceramic electrochromic window:Field study results[J]. Energ Buildings, 2006, 38:30-44. [21] NATH P, BUNSHAH R F, BASOL B M, et al. Electrical and optical properties of In2O3:Sn films prepared by activated reactive evaporation[J]. Thin Solid Films, 1980, 72:463-468. [22] KOH S K, HAN Y G, LEE J H, et al. Material properties and growth control of undoped and Sn-doped In2O3 thin films prepared by using ion beam technologies[J]. Thin Solid Films, 2006, 496:81-88. [23] ABDUEV A KH, AKHMEDOV A K, ASVAROV A SH. The structural and electrical properties of Ga-doped ZnO and Ga,B-codoped ZnO thin films:the effects of additional boron impurity[J]. Solar Energy Materials and Solar Cell, 2007, 91:258-260. [24] AGURA H, SUZUKI A, MATSUSHITA T, et al. Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition[J]. Thin Solid Films, 2003, 445:263-267. [25] PARK S-M, IKEGAMI T, EBIHARA K. Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition[J]. Thin Solid Films, 2006, 513:90-94. [26] BAE J W, LEE S W, YEOM G Y. Doped-fluorine on electrical and optical properties of tin oxide films grown by ozone-assisted thermal CVD[J]. Journal of the Electrochemical Society, 2007, 154:D34-D37. [27] FRENNING G, ENGELMARK F, NIKLASSON G A, et al. Li conduction in sputtered amorphous Ta2O5[J]. Journal of the Electrochemical Society, 2001, 148:A418-A421. [28] YOO S J, LIM J W, SUNG Y-E. Improved electrochromic devices with an inorganic solid electrolyte protective layer[J]. Solar Energy Materials and Solar Cell, 2006, 90:477-484. [29] YANG H, WANG C, DIAO X, et al. A new all-thin-film electrochromic device using LiBSO as the ion conduct-ing layer[J]. Journal of Physics D:Applied Physics, 2008, 41:115301-115305. [30] NGUYEN C A, ARGUN A A, HAMMOND P T, et al. Layer-by-layer assembled solid polymer electrolyte for electrochromic devices[J]. Journal of Materials Chemistry, 2011, 23:2142-2149. [31] NGUYEN C A, XIONG S X, MA J, et al. Toward electrochromic device using solid electrolyte with polar polymer host[J]. Journal of Physical Chemstry B, 2009, 113:8006-8010. [32] AVELLANEDA C O, VIEIRA D F, AL-KAHLOUT A, et al. All solid-state electrochromic devices with gelatin-based electrolyte[J]. Solar Energy Materials and Solar Cells, 2008, 92:228-233. [33] ZHOU D, ZHOU R, CHEN C X, et al. Non-volatile polymer electrolyte based on poly(propylenecarbonate), ionic liquid, and lithium perchlorate for electrochromic devices[J]. Journal of Physical Chemstry B, 2013, 117:7783-7789. [34] PÉREZ L C, BRAND? O L, SOUSA J M, et al. Segmented polymer electrolyte membrane fuel cells-a review[J]. Renewable and Sustainable Energy Reviews, 2011, 15:169-185. [35] DESAI S, SHEPHERD R L, INNIS P C, et al. Gel electrolytes with ionic liquid plasticiser for electrochromic devices[J]. Electrochimica Acta, 2011, 56:4408-4413. [36] ARGUN A A, CIRPAN A, REYNOLDS J R. The first truly all-polymer electrochromic devices[J]. Advanced Materials, 2003, 16:1338-1341. [37] SYDAM R, DEEPA M, SRIVASTAVA A K. Electrochromic device response controlled by an insitu poly-merized ionic liquid based gel electrolyte[J]. RSC Advanced, 2012, 2:9011-9021. [38] COSTA C, PEREIRA S, CORREIA N, et al. Study of electrochromic devices with nanocom-posites polymethacrylate hydroxyethylene resin based electrolyte[J]. Polymer for Advanced Technologies, 2012, 23:791-795. [39] GONG Y F, FU X K, ZHANG S P, et al. Preparation of a star network PEG-based gel polymer electrolyte and its application to electrochromic devices[J]. Chinese Journal of Chemistry, 2007, 25:1743-1747. [40] SARICIFTCI N S, MEHRING M, NEUGEBAUER N. In situ studies on the structural mechanism of zwitter-viologen system during electrochemical charge-transfer reactions[J]. Synthetic Metals, 1991, 41/42/43:2971-2971. [41] SLIWA W, BACHOWSKA B, ZELICHOWICZ N. Chemistry of viologens[J]. Heterocycles, 1991, 32:2241-2273. [42] KAIFER A E, BARD A J. Micellar effects on the reductive electrochemistry of methylviologen[J]. Journal of Physical Chemistry B, 1985, 89:4876-4880. [43] ČÁRSKY P, HVNIG S, SCHEUTZOW D, et al. Theoretical study of redox equilibria[J]. Tetrahedron, 1969, 25:4781-4796. [44] WATANABE T, HONDO K. Measurement of the extinction coefficient of the methyl viologen cation radical and the efficiency of its formation by semiconductor photocatalysis[J]. Journal of Physics and Chemistry, 1982, 86:2617-2619. [45] MORTIMER R J. Organic electrochromic materials[J]. Electrochimica Acta, 1999, 44:2971-2981. [46] MORTIMER R J, DYER A L, REYNOLDS J R. Electrochromic organic and polymeric materials for display applications[J]. Displays, 2006, 27:2-18. [47] BEAUJUGE P M, REYNOLDS J R. Color control in π-conjugated organic polymers for use in electrochromic devices[J]. Chemical Reviews, 2010, 110:268-320. [48] DYER A L, REYNOLDS J R. Electrochromism in conjugated conducting polymers[M][C]//Handbook of Conducting Polymers. Boca Raton, USA:CRC Press, 2007. [49] DYER A L, CRAIG M R, BABIARZ J E, et al. Orange and red to transmissive electrochromic polymers based on electron-rich dioxythiophenes[J]. Macromolecules, 2010, 43(10):4460-4467. [50] GUNBAS G, TOPPARE L. Electrochromic conjugated polyhetero-cycles and derivatives-highlights from the last decade towards realization of long lived aspirations[J]. Chemical Communication, 2012, 48:1083-1101. [51] DYER A L, HOMPSON E J, REYNOLDS J R. Completing the color palette with spray-processable polymer electrochromics[J]. ACS Applied Materials and Interfaces, 2011, 3:1787-1795. [52] AMB C M, KERSZULIS J A, HOMPSON E J, et al. Propylenedioxythiophene (ProDOT)-phenylene copolymers allow a yellow-to-transmissive electrochrome[J]. Polymer Chemistry, 2011, 2:812-814. [53] KERSZULIS J A, AMB C, DYER A, et al. Follow the yellow brick road-structural optimization of vibrant yellow-to-transmissive electrochromic conjugated polymers[J]. Macromolecules, 2014, 47:5462-5469. [54] DYER A L, CRAIG M R, BABIARZ J E, et al. Orange and red to transmissive electrochromic polymers based on electron-rich dioxythio-phenes[J]. Macromolecules, 2010, 43:4460-4467. [55] LI M, PATRA A, SHEYNIN Y, et al. Hexyl-derivatized poly(3,4-ethylenedioxyselenophene):novel highly stable organic elec-trochromic material with high contrast ratio, high coloration efficiency, and low-switching voltage.[J]. Advanced Materials, 2009, 21:1707-1711. [56] OZKUT M I, ATAK S, ONAL A M, et al. A blue to highly transmissive soluble elec-trochromic polymer based on poly(3,4-propylenedioxyselenophene) with a high stability and coloration efficiency[J]. Journal of Materials Chemistry, 2011, 21:5268-5272. [57] SONMEZ G, SONMEZ H B, SHEN C K F, et al. A processable green polymeric electrochromic[J]. Macromolecules, 2005, 38:669-675. [58] GUNBAS G E, DURMUS A, TOPPARE L. Could green be greener? Novel donor-acceptor-type electrochromic polymers:towards excellent neutral green materials with exceptional transmissive oxidized states for completion of RGB color space[J]. Advanced Materials, 2008, 20(4):691-695. [59] BEAUJUGE P M, ELLINGER S, REYNOLDS J R. Spray process-able green to highly transmissive electrochromics via chemically polymerizable donor-acceptor heterocyclic pentamers[J]. Advanced Materials, 2008, 20(14):2772-2776. [60] SHI P J, AMB C M, KNOTT E P, et al. Broadly absorbing black to transmissive switching electrochromic polymers[J]. Advanced Materials, 2010, 22(44):4949-4953. [61] ICLI M, PAMUK M, ALGI F, et al. A new soluble neutral state black electrochromic copolymer via a donor-acceptor approach[J]. Organic Electronics, 2010, 11(7):1255-1260. [62] DEB S K. A novel electropho-tographic system[J]. Appl Opt Suppl, 1969, 3:192-195. [63] SVENSSON J S E M, GRANQVIST C G. Electrochromic hydrated nickel oxide coatings for energy efficient windows:optical properties and coloration mechanism[J]. Applied Physical Letters, 1986, 49:1566-1568. [64] WEI Y X, LI M, ZHENG J M, et al. Structural characterization and electrical and optical properties of V2O5 films prepared via ultrasonic spraying[J]. Thin Solid Films, 2013, 534:446-451. [65] VERMA A, SAMANTA S B, MEHRA N C, et al. Sol-gel derived nanocrystalline CeO(2)-TiO(2) coatings for electrochromic windows[J]. Solar Energy Materials and Solar Cells, 2005, 86:85-103. [66] GRANQVIST C G. Electrochromics for smart windows:Oxide-based thin films and devices[J]. Thin Solid Films 2014, 564:1-38. [67] NEFF V D. Electrochemical oxidation and reduction of thin-films of prussian blue[J]. Journal of the Electrochemical Society, 1978, 125:886-887. [68] ROIG A, NAVARRO J, GARCIA J J, et al. Voltammetric study on the stability of deposited prussian blue films against successive potential cycling[J]. Electrochimica Acta, 1994, 39:437-442. [69] ITAYA K, UCHIDA I, NEFF V D. Electrochemistry of polynuclear transition-metal cyanides-prussian blue and its analogs[J]. Accounts of Chemical Research, 1986, 19:162-168. [70] DEMIRI S, NAJDOSKI M, VELEVSKA J. A simple chemical method for deposition of electrochromic Prussian blue thin films[J]. Materials Research Bulletin, 2011, 46:2484-2488. [71] SIPERKO L M, KUWANA T. Electrochemical and spectroscopic studies of metal hexacyanoferrate films 2:cupric hexacyanoferrate and Prussian blue layered films[J]. Journal of Electrochemical Society, 1986, 133:2439-2440. [72] JOSEPH J, GOMATHI H, PRABHAKARA RAO G. Electro-chemical characteristics of thin films of nickel hexacyanoferrate formed on carbon substrates[J]. Electrochimica Acta, 1991, 36:1537-1541. [73] JOSEPH J, GOMATHI H, PRABHAKARA RAO G. Electrodes modified with cobalt hexacyanoferrate[J]. Journal of Electroanalytical Chemistry, 1991, 304:263-269. [74] WILDE R E, GHOSH S N, MARSHALL B J. The Prussian blues[J]. Inorganic Chemistry, 1970, 9:2512-2516. [75] JAYALAKSHMI M, SCHOLZ F. Performance characteristics of zinc hexacyanoferrater/prussian blue and copper hexacyanoferrater/prussian blue solid state secondary cells[J]. Journal of Power Sources, 2000, 91:217-223. [76] KULESZA P J, FASZYNSKA M. Indium(III)-hexacyanoferrate(III,II) as an inorganic material analogous to redox polymers for modification of electrode surfaces[J]. Electrochimica Acta, 1989, 34:1749-1753. [77] AKIHITO G, HIROAKI U, MANABU I, et al. Simple synthesis of three primary colour nanoparticle inks of Prussian blue and its analogues[J]. Nanotechnology, 2007, 18:345609-345615. [78] BALZANI V, JURIS A, VENTURI M, et al. Luminescent and redox-active polynuclear transition-metal complexes[J]. Chemical Reviews, 1996, 96:759-833. [79] KAIM W. Concepts for metal complex chromophores absorbing in the near infrared[J]. Coordination Chemistry Reviews, 2011, 255:2503-2513. [80] YAO C J, YAO J, ZHONG Y W. Electronic communication between two amine redox centers bridged by a bis(terpyridine)ruthenium(II) complex[J]. Inorganic Chemistry, 2011, 50:6847-6849. [81] KUMAR A, SINGH P, KULKARNI N, et al. Structural and optical studies of nanocrystalline V2O5 thin films[J]. Thin Solid Films, 2008, 516:912-918. [82] PRODIUS D, MACAEV F, MEREACRE V, et al. Synthesis and characterization of {Fe2CuO} clusters as precursors for nanosized catalytic system for Biginelli reaction[J]. Inorganic Chemistry Communications, 2009, 12:642-645. [83] WILLINGER M G, NERI G, RAUWEL E, et al. Vanadium oxide sensing layer grown on carbon nanotubes by a new atomic layer deposition process[J]. Nano Letters, 2008, 8:4201-4204. [84] KIM H, LEE H B R, MAENG W J. Applications of atomic layer deposition to nanofabrication and emerging nanodevices[J]. Thin Solid Films, 2009, 517:2563-2580. [85] BOUZIDI A, BENRAMDANE N, NAKRELA A, et al. First synthesis of vanadium oxide thin films by spray pyrolysis technique[J]. Materials Science and Engineering:B-Solid, 2002, 95:141-147. [86] CHRONAKIS I S. Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process-a review[J]. Journal of Materials Process Technology, 2005, 167:283-293. [87] CHEN J J, VACCHIO M J, WANG S J, et al. The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications[J]. Solid State Ionics, 2008, 178:1676-1693. [88] OZER N. Electrochemical properties of sol-gel deposited vanadium pentoxide films[J]. Thin Solid Films, 1997, 305:80-87. [89] DE ANDRADE I C Jr, ZHANG R, KANICKI J, et al. Properties of electrodeposited WO3 thin films[J]. Molecular Crystals and Liquid Crystals, 2014, 604:71-83. [90] MONK P M S, MORTIMER R J, ROSSEINSKY D R. Electrochromism-fundamentals and applications[M]. Weinheim (Federal Republic of Germany):VCH Verlagsgesellschaft mbH, 1995. [91] GRANQVIST C G. Oxide electrochromics:An introduc tion to devices and materials[J]. Solar Energy Materials and Solar Cells, 2012, 99:1-13. [92] BAETENS R, JELLE B P, GUSTAVSEN A. Properties, requirement s and possibilit ies of smart windows for dynamic daylight and solar energy control in buildings:a state-of-the-art review[J]. Solar Energy Materials and Solar Cells, 2010, 94:87-105. [93] LLORDES A, GARCIA G, GAZQUEZ J, et al. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites[J]. Nature, 2013, 500:323-326. [94] PFLUGHOEFFT M, WELLER H. Spectroelectrochemical analysis of the electrochromism of antimony-doped nanoparticulate tin-dioxide electrodes[J]. The Journal of Physical Chemistry B, 2002, 106:10530-10534. [95] SAKAMOTO A, YAMAMOTO S. Glass-ceramics:engineering principles and applications[J]. International Journal of Applied Glass Science, 2010, 1:237-247. [96] RUNNERSTROM E L, LLORDES A, LOUNIS S D, et al. Nanos-tructured electrochromic smart windows:traditional materials and NIR-selective plasmonic nanocrystals[J]. Chemical Communications, 2014, 50:10555-10572. [97] KANEHARA M, KOIKE H, YOSHINAGA T, et al. Indium tin oxide nanoparticles with composition-ally tunable surface plasmon resonance frequencies in the near-IR region[J]. Journal of American Chemistry Society, 2009, 131:17736-17737. [98] GARCIA G, BUONSANTI R, RUNNERSTROM E L, et al. Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals[J]. Nano Letters, 2011, 11:4415-4420. [99] CHOU H H, NGUYEN A, CHORTOS A, et al. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing[J]. Nature Communications, 2015,6:8011. [100] INVERNALE M A, DING Y, SOTZING G A. All-organic electrochromic spandex[J]. ACS Applied Materials and Interfaces, 2010, 2:296-300. [101] MEUNIER L, KELLY F M, COCHRANE C, et al. Flexible displays for smart clothing:part II:electrochromic displays[J]. Indian Journal of Fibre andTextile Research, 2011, 36:429-435. [102] LAFORGUE A. Electrically con-trolled colour-changing textiles using the resistive heating properties of PEDOT nanofibers[J]. Journal of Materials Chemistry, 2010, 20:8233-8235. [103] BECHINGER C, FERRERE S, ZABAN A, et al. Photoelectrochromic windows and displays[J]. Nature, 1996, 383:608-610. [104] KRAŠOVEC U O, TOPIČ M, GEORG A, et al. Preparation and characterisation of nano-structured WO3-TiO2 layers for photoelec-trochromic devices[J]. Journal of Sol-Gel Science and Technology, 2005, 36:45-52. [105] LEFTHERIOTIS G, SYRROKOSTAS G, YIANOULIS P. Partly covered photoelectrochromic devices with enhanced coloration speed and efficiency[J]. Solar Energy Materials and Solar Cells, 2012, 96:86-92. [106] LIAO J Y, HO K C. A photo-electrochromic device using a PEDOT thin film[J]. Journal of New Materials for Electrochemical System, 2005, 8:37-47. [107] HECHAVARRÍA L, MENDOZA N, RINCÓN M E, et al. Photoelectrochromic performance of tungsten oxide based devices with PEG-titanium complex as solvent-free electrolytes[J]. Solar Energy Materials and Solar Cells, 2012, 100:27-32. [108] WU J J, HSIEH M D, LIAO W P, et al. Fast-switching photovoltachromic cells with tunable transmittance[J]. ACS Nano, 2009, 3:2297-2303. [109] ZHANG F F, LI B Z, ZHENG J M, et al. Facile fabrication of micro-nano structured triboelectric nanogenerator with high electric output[J]. Nanoscale Research Letters, 2015, 10:298-304. -