3D打印材料应用和研究现状

王延庆 沈竞兴 吴海全

王延庆, 沈竞兴, 吴海全. 3D打印材料应用和研究现状[J]. 航空材料学报, 2016, 36(4): 89-98. doi: 10.11868/j.issn.1005-5053.2016.4.013
引用本文: 王延庆, 沈竞兴, 吴海全. 3D打印材料应用和研究现状[J]. 航空材料学报, 2016, 36(4): 89-98. doi: 10.11868/j.issn.1005-5053.2016.4.013
Yanqing WANG, Jingxing SHEN, Haiquan WU. Application and Research Status of Alternative Materials for 3D-printing Technology[J]. Journal of Aeronautical Materials, 2016, 36(4): 89-98. doi: 10.11868/j.issn.1005-5053.2016.4.013
Citation: Yanqing WANG, Jingxing SHEN, Haiquan WU. Application and Research Status of Alternative Materials for 3D-printing Technology[J]. Journal of Aeronautical Materials, 2016, 36(4): 89-98. doi: 10.11868/j.issn.1005-5053.2016.4.013

3D打印材料应用和研究现状

doi: 10.11868/j.issn.1005-5053.2016.4.013
基金项目: 

江苏省自然基金项目 BK20141126

中国矿业大学国家大学生创新训练计划项目 201610290089

详细信息
    通讯作者:

    王延庆(1978—),男,博士,副教授,主要从事材料先进成形,复合材料等研究,(E-mail)cumtwyq@163.com

  • 中图分类号: TF124.36

Application and Research Status of Alternative Materials for 3D-printing Technology

  • 摘要: 综述了3D打印领域内六种典型3D打印工艺各自所用的3D打印材料,从物理形态上主要包含液态光敏树脂材料、薄材(纸张、塑料膜)、低熔点丝材和粉末材料四种;从成分上则几乎涵盖了目前生产生活中的各类材料包括塑料、树脂、蜡等高分子材料,金属和合金材料,陶瓷材料等。立体光刻(Stereo Lithigraphy Apparatus,SLA)工艺的材料为感光性的液态树脂,即光敏树脂;叠层实体制造(Laminated Object Manufacturing,LOM)工艺的材料为纸张、塑料膜等薄材;熔融沉积成型(Fused Deposition Modeling,FDM)工艺的材料主要为便于熔融的低熔点丝状材料,主要为蜡丝、聚烯烃树脂丝、聚酰胺丝、ABS塑料丝等高分子材料;选择性激光烧结(Selective Laser Sintering,SLS)的材料是各类粉末,包括尼龙粉、覆裹尼龙的玻璃粉、聚碳酸脂粉、聚酰胺粉、蜡粉、金属粉(打印后常须进行再烧结及渗铜处理)、覆蜡陶瓷粉、覆蜡金属粉以及覆裹热凝树脂细沙等;选择性激光熔化(Selective Laser Melting,SLM)工艺使用与SLS一样的粉末材料,不仅具有SLS优点,而且成型件致密度更高,力学性能更好;三维打印与胶粘(Three Dimensional Printing and Gluing,3DP)工艺的材料同样为粉末材料,但这些粉末是通过喷头喷涂黏结剂被黏结在一起,同时将零件的截面"印刷"在材料粉末上面,类似于纸张彩色打印,可通过设置三原色黏结剂及喷头系统,实现彩色立体打印。对3D打印材料质量和产量的发展方向也进行了分析和展望。

     

  • 图  1  SLS工艺中的“球化”现象示意图

    Figure  1.  Schematic diagram of the phenomenon of “ball” in SLS process

    表  1  SL系列树脂的性能参数

    Table  1.   Parameter of SL series resin

    IndexSL5195SL5510SL5530SL7510SL7540SL7560SL Y-C9300
    AppearanceTransparentand brightTransparentand brightTransparentand brightTransparentand brightTransparentand brightWhiteTransparent
    Density/(g·cm-3)1.161.131.191.171.141.181.12
    Viscosity/(mPa·s)(30 ℃)1801802103252792001090
    Curing depth/mis5.24.15.45.56.05.29.4
    Critical radiation intensity/(mJ·cm-2)13.111.48.910.98.75.48.4
    Shore hardness83868887798675
    Tensile strength /MPa46.57756-614438-3942-4645
    Tensile modulus /MPa209032962889-314422061538-16622400-26001315
    Bending strength /MPa49.39963-878248-5283-104
    Bending modulus/MPa162830542620-324024551372-14412400-2600
    Elongation rate/%115.43.8-4.413.721.2-22.46-157
    Impact strength/(J·m-1)5427213238.4-45.928-44
    Glass temperature /℃67-82687963576052
    Thermal T<Tr1088476181
    expansion rate/(10-6·℃-1) T>Tr189182152
    Thermal conductivity/(W·m-1·K-1)0.1820.1810.1730.1750.159
    Post cure density/(g·cm-3)1.181.231.251.181.221.18
     Note:1 mis=2.54×10-3mm
    下载: 导出CSV

    表  2  ACCURA系列树脂的性能参数

    Table  2.   Parameter of ACCURA series resin

    IndexACCURASI 10ACCURASI 20ACCURASI 30ACCURASI 40 Nd
    SLA Viper si2SLA7000SLA Viper si2SLA7000SLA Viper si2SLA7000SLA Viper si2SLA7000
    AppearanceTransparent and brightTransparent and brightTransparent and brightTransparent and bright
    Density/(g·cm-3)1.11.11.11.1
    Viscosity/(mPa·s)(30℃)485450100485
    Curing depth/mis6.36.86.15.75.96.06.66.8
    Criticalradiation intensity/(mJ·cm-2)13.815.511.410.28.29.321.720.1
    Shore hardness838688877986
    Tensile strength /MPa62-6372-7629.4-36.228-3030.7-33.429.7-30.857.2-58.761.5-61.7
    Bending strength/MPa89-97109-11546.1-42.728-3249.6-53.736.5-40.693.4-96.192.8-97
    Elongation rate/%3.1-54.9-5.613-2718-2314-2013-234.8-5.14.9-5.1
    Impact strength/(J·m-1)18.7-27.714.9-17.134.8-36.932.1-36.316.6-42.321.4-40.722.5-27.222.3-29.9
    Glass temperature/℃61.761.75454623965.562
    下载: 导出CSV

    表  3  SOMOS系列树脂的性能参数

    Table  3.   Parameter of SOMOS series resin

    IndexProtoTool 20LProtoTool 12120WaterShed 11120WaterClear1012091207120
    AppearanceGrayCherryTransparentand brightTransparent and amberTransparentand amberTransparent and amber
    Density/(g·cm-3)1.61.151.121.121.131.13
    Viscosity/(mPa·s)(30℃)2500550260130450700
    Curing depth/mis4.76.06.55.66.14.8
    Critical radiation intensity/(mJ·cm-2)6.811.811.57.710.98.0
    Shore hardness92.885.3N/A8380-8288
    Tensile strength/MPa7870.247.1-53.64330-3258
    Tensile modulus/MPa1090033202650-288021901227-14622477
    Bending strength/MPa13810963.1-74.277.941-46108
    Bending modulus/MPa90402620-32402040-237023701310-14552967
    Elongation rate/%1.2411-201815-252.1-6.9
    Impact strength/(J·m-1)14.511.520-303148-5327
    Glass temperature/℃10256.545.9-54.55852-6170
    下载: 导出CSV

    表  4  SLS工艺各型号打印材料的相关性能

    Table  4.   Parameter of various types of printing materials for SLS

    MaterialComponentParticle size/μmInfiltration treatmentMechanical property Purpose
    Tensile strength/MPaHardness
    3D System(DTM) Company
    Copper polyamideCopper/PolyamideN/AY(Copper)35.9HRD75Injection mold
    Rapid steel 1.0Copper/Steel55Y(Copper)475HRB75Injection mold
    Rapid steel 2.0Copper/316L45Y(Copper)580HRC22Injection mold
    Laser formST-100Film coated stainless steel23-34Y(Copper)510HRB87Metal parts and injection mold
    Laser formST-200Film coated 420N/AY(Copper)435HRB79Metal parts and injection mold
    Laser formA6Film coated steelN/AN/A610HRC20Injection mold and complex parts
    EOS Company
    EOSINT M Cu3201Ni,CuSn,Cu3P30Y(Resin)120HB43-84Injection mold
    Direct steel 50-V1Steel502N500HB180-220Functional parts and injection mold
    Direct steel 20-V1Steel20N600HB150-250Functional parts and injection mold
    Direct steel 50Copper50Y(Resin)200HB90-120Metal parts and injection mold
    Direct steel 20Copper20N400N/AMetal parts and injection mold
    下载: 导出CSV

    表  5  Object 系统使用的类工程塑料打印材料的性能

    Table  5.   Parameter of similar engineering plastics for Object system

    Parameter RGB 5160-DMRGD 525Fullcure 720Fullcure 840Fullcure 430MED 610
    Basic characteristicsABS likeHigh temperatureresistanceTransparentNon-transparentPP likeTransparent
    Tensile strength/MPa55-6070-8050-6550-6020-3050-65
    Elongation rate/%10-1515-2515-2540-5010-25
    Elastic modulus/MPa2600-30003200-35002000-30002000-30001000-20002000-3000
    Bending strength/MPa65-75110-13080-11060-7030-4075-110
    Bending modulus/MPa1700-22003100-35002700-33001900-25001200-16002200-3200
    Heat deflection temperature/℃(0.45 MPa/1.82 MPa)56-68/51-5563-67/55-5745-50/45-5045-50/45-5037-42/32-3445-50
    Impact strength/(J·m-1)65-8014-1620-3020-3040-5020-30
    Glass temperature/℃47-5362-6548-5048-5035-37N/A
    Shao’s temperature/℃85-8787-8883-8683-8674-7883-86
    下载: 导出CSV

    表  6  Object 系统使用的类橡胶打印材料的性能

    Table  6.   Parameter of similar rubber for Object system

    Parameter Fullcure980 & Fullcure930Fullcure970Fullcure950
    Basic characteristicsRubber likeRubber likeRubber like
    Elongation rate/%170-22045-5545-55
    Tensile strength/MPa0.8-1.51.8-2.43-5
    Compression ratio/%4-50.5-1.50.5-1.5
    Shore hardness26-2860-6273-77
    Resistance to tearing/(kg·cm-1)2-43-58-12
    Post cure density/(g·cm-3)1.12-1.131.12-1.131.16-1.17
    下载: 导出CSV
  • [1] DANIEL G,BASTIAN H,FRANZ G,et al.Continuous 3D-printing for additive manufacturing[J].Rapid Prototyping Journal,2014,20(4):320-327. doi: 10.1108/RPJ-08-2012-0068
    [2] 王广春,赵国群.快速成型与快速模具制造技术及其应用[M].第三版.北京:机械工业出版社,2009.
    [3] 黄树槐,肖跃加,莫健华,等.快速成形技术的展望[J].中国机械工程,2000(11):195-200. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX2000Z1049.htm

    HUANG S H,XIAO Y J,MO J H, et al.Prospect of rapid prototyping technology[J].China Mechanical Engineering,2000(11):195-200. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX2000Z1049.htm
    [4] 孙晓林.3D打印技术的应用[J].机电产品开发与创新,2013(4):108-109.

    SUN X L.Application of 3D printing technology[J].Development & Innovation of Machinery & Electrical Products,2013(4):108-109.
    [5] MENG X L,SHU B Z.Research on the application of 3D printing technology in the field of packaging[J]. Applied Mechanics and Materials, 2015, 731: 304-308. doi: 10.4028/www.scientific.net/AMM.731
    [6] VAEZI M,SEIZ H,YANG S F.A review on 3D micro-additive manufacturing technologies[J].The International Journal of Advanced Manufacturing Technology,2013,67(5):1721-1754. http://cn.bing.com/academic/profile?id=2018566369&encoded=0&v=paper_preview&mkt=zh-cn
    [7] 段玉岗,王素琴,陈浩,等.激光快速成型中影响光固化材料收缩变形的研究[J].化学工程,2000,28(6):53-56. http://www.cnki.com.cn/Article/CJFDTOTAL-IMIY200006013.htm

    DUAN Y G,WANG S Q,CHEN H,et al.Study on shrinkage and deformation of light curing materials in laser rapid prototyping[J]. Chemical Engineering, 2000,28(6):53-56. http://www.cnki.com.cn/Article/CJFDTOTAL-IMIY200006013.htm
    [8] PU X,ZHANG J,DUMUR F,et al.Visible light sensitive photoinitiating systems:recent progress in cationic and radical photopolymerization reactions under soft conditions[J].Progress in Polymer Science,2015,41:32-66. doi: 10.1016/j.progpolymsci.2014.09.001
    [9] KAREN LINDER.Tethon 3D releases new authentic porcelain ceramic resin for SLA/DLP 3D printers[N/OL].Prweb,2016-02-02[2016-6-14].http://www.prweb.com/releases/2016/02/prweb13194459.htm
    [10] 杨家林,王洋,陈杨.快速成型技术研究现状与发展趋势[J].新技术新工艺,2003(1):28-29. http://www.cnki.com.cn/Article/CJFDTOTAL-XJXG200301011.htm

    YANG J L,WANG Y,CHEN Y. Research status and development trend of rapid prototyping technology[J] .New Technology & New Process, 2003(1):28-29. http://www.cnki.com.cn/Article/CJFDTOTAL-XJXG200301011.htm
    [11] 荆慧.快速成型技术原理及成型精度分析[J].机械研究与应用.2013,26(2):183-187. http://www.cnki.com.cn/Article/CJFDTOTAL-JXYJ201302069.htm

    JING H. Principle of rapid prototyping technology and analysis of forming precision[J].Mechanical Research & Application,2013,26(2):183-187. http://www.cnki.com.cn/Article/CJFDTOTAL-JXYJ201302069.htm
    [12] 李宝强,方沂.熔融沉积快速成型工艺精度分析与研究[J].福建轻纺,2013(11):41-44. http://www.cnki.com.cn/Article/CJFDTOTAL-FJQF201311022.htm

    LI B Q,FANG Y.Analysis and research on the precision of fused deposition rapid prototyping process[J]. Fujian Textile,2013(11):41-44. http://www.cnki.com.cn/Article/CJFDTOTAL-FJQF201311022.htm
    [13] 吴涛,倪荣华,王广春.熔融沉积快速成型技术研究进展[J].科技视界,2013(34):94-95. http://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201334068.htm

    WU T,NING R H,WANG G C.Research progress of rapid prototyping technology[J].Science & Technology Vision,2013(34):94. http://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201334068.htm
    [14] JIANG C,ZHAO G F.A preliminary study of 3D printing on rock mechanics[J].Rock Mechanics and Rock Engineering,2015,48(3):1041-1050. doi: 10.1007/s00603-014-0612-y
    [15] TEKINALP P L,GREGORIO V K,CHADE V G, et al.Highly oriented carbon fiber-polymer composites via additive manufacturing[J].Composites Science and Technology,2014,105:144-150. doi: 10.1016/j.compscitech.2014.10.009
    [16] GAO K,TAO Y,ZHANG K, et al.Research on common problems based on a desktop 3D printer[J].Applied Mechanics and Materials,2015,757:175-178. doi: 10.4028/www.scientific.net/AMM.757
    [17] 张永忠,席明哲,石力开,等.激光快速成形316L不锈钢研究[J].材料工程,2002(5):22-24. http://www.cnki.com.cn/Article/CJFDTOTAL-CLGC200205005.htm

    ZHANG Y Z,XI M Z,SHI L K,et al.Study on laser rapid forming 316L stainless steel[J].Journal of Materials Engineering,2002(5):22-24. http://www.cnki.com.cn/Article/CJFDTOTAL-CLGC200205005.htm
    [18] 陈志平.基于3D打印的直线导轨快速制造的应用研究[J].机械工程师,2014(3):24-25. http://www.cnki.com.cn/Article/CJFDTOTAL-JXGU201403027.htm

    CHEN Z P.Application research of linear guide rail rapid manufacture based on 3D printing[J].Mechanical Engineer,2014(3):24-25. http://www.cnki.com.cn/Article/CJFDTOTAL-JXGU201403027.htm
    [19] 孙建英.选择性激光烧结技术及其在模具制造领域的应用[J].煤矿机械,2006,27(7):112-113. http://www.cnki.com.cn/Article/CJFDTOTAL-MKJX200607052.htm

    SUN J Y.Selective laser sintering technology and its application in the field of die manufacturing[J].Coal Mining Machinery,2006,27(7):112-113. http://www.cnki.com.cn/Article/CJFDTOTAL-MKJX200607052.htm
    [20] 王伟,王璞璇,郭艳玲.选择性激光烧结后处理工艺技术研究现状[J].森林工程,2014,30(2):101-104. http://www.cnki.com.cn/Article/CJFDTOTAL-SSGC201402026.htm

    WANG W,WANG P X,GUO Y L.Research status of selective laser sintering process[J].Forest Engineering,2014,30(2):101-104. http://www.cnki.com.cn/Article/CJFDTOTAL-SSGC201402026.htm
    [21] GROSS B C,ERKAL J L,LOCKWOOD S Y,et al.Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences[J]. Anal Chem,2014,86(7):3240-3253. doi: 10.1021/ac403397r
    [22] MURPHYS V,ATALA A.3D bioprinting of tissues and organs[J].Nature Biotechnology,2014,32(8):773-785. doi: 10.1038/nbt.2958
    [23] 鲁中良,史玉升,刘锦辉,等.间接选择性激光烧结与选择性激光熔化对比研究[J].铸造技术,2007,28(11):37-42. http://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS200711012.htm

    LU Z L,SHI Y S,LIU J H, et al.Comparative study of indirect selective laser sintering and selective laser melting[J].Casting Technology,2007,28(11):37-42. http://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS200711012.htm
    [24] 李瑞迪,魏青松,刘锦辉,等.选择性激光熔化成形关键基础问题的研究进展[J].航空制造技术,2012(5):18-23.

    LI R D,WEI Q S,LIU J H, et al.Research progress on key basic problems of selective laser melting[J]. Aeronautical Manufacturing Technology,2012(5):18-23.
    [25] SIMCHI A.Direct laser sintering of metal powders:mechanism,kinetics and microstructural features[J]. Materials Science and Engineering A, 2006,428(1/2):148-158. http://cn.bing.com/academic/profile?id=2000363357&encoded=0&v=paper_preview&mkt=zh-cn
    [26] HONG S,SANCHEZ C,DU H.Fabrication of 3D printed metal structures by use of high-viscosity Cu paste and a screw extruders[J].Journal of Electronic Materials,2015,44(3):836-841. doi: 10.1007/s11664-014-3601-8
    [27] EOS company.Materials for metal additive manufacturing[EB/OL].[2016-6-14]http://www.eos.info/material-m.
    [28] 王华明,张述泉,王向明.大型钛合金结构件激光直接制造的进展与挑战[J].中国激光,2009,36(12):3204-3209. doi: 10.3788/JCL

    WANG H M,ZHANG S Q,WANG X M.Progress and challenges of laser direct manufacturing of large titanium alloy structural parts[J].China Laser,2009,36(12):3204-3209. doi: 10.3788/JCL
    [29] 常辉,周廉,王向东.我国钛工业与技术进展及展望[J].航空材料学报,2014,34(4):37-43. doi: 10.11868/j.issn.1005-5053.2014.4.003

    CHANG H,ZHOU L,WANG X D.Progress and prospect of titanium industry and technology in China[J].Journal of Aeronautical Materials,2014,34(4):37-43. doi: 10.11868/j.issn.1005-5053.2014.4.003
    [30] 王华明,张述泉,汤海波,等.大型钛合金结构激光快速成形技术研究进展[J].航空精密制造技术,2008,44(6):28-30. http://www.cnki.com.cn/Article/CJFDTOTAL-HJZJ200806009.htm

    WANG H M,ZHANG S Q,TANG H B, et al.Research progress of laser rapid forming technology for large scale titanium alloy structure[J].Aviation Precision Manufacturing Technology,2008,44(6):28-30. http://www.cnki.com.cn/Article/CJFDTOTAL-HJZJ200806009.htm
    [31] 张立武,写旭,杨延涛.钛合金精密热成形技术在航空航天的应用进展[J].航空制造技术,2015,489(19):14-17. http://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201519003.htm

    ZHANG L W,XIE X,YANG Y T.Progress in the application of titanium alloy precision hot forming technology in aerospace[J].Aeronautical Manufacturing Technology,2015,489(19):14-17. http://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201519003.htm
    [32] MA Y Z,YIN X W,FAN X M, et al.Near-net-shape fabrication of Ti3SiC2-based ceramics by three-dimensional printing[J].International Journal of Applied Ceramic Technology,2015,12(1):71-80. doi: 10.1111/ijac.12321
    [33] FENG P,MENG X M,CHEN J F, et al.Mechanical properties of structures 3D printed with cementitious powders[J].Construction and Building Materials,2015,93:486-497. doi: 10.1016/j.conbuildmat.2015.05.132
    [34] ZHOU J G.A new rapid tooling technique and its special binder study[J].Journal of Rapid Prototyping,1999(5):82-88. http://cn.bing.com/academic/profile?id=2143681275&encoded=0&v=paper_preview&mkt=zh-cn
    [35] PETER T,COLEMAN M,DONGHYUK K, et al.Research highlights: printing the future of microfabrications[J].Lab on a Chip,2014,14(9):1491-1495. doi: 10.1039/c4lc90023e
    [36] KIM Y,YOON C,HAM S, et al.Emissions of nanoparticles and gaseous material from 3D printer operation[J].Environ Sci Technol,2015, 49 (20):12044-12053. doi: 10.1021/acs.est.5b02805
    [37] FARAHANI R D,CHIZARI K,THERRIALT D.Three-dimensional printing of freeform helical microstructures:a review[J].Nanoscale, 2014,6(8):1475-485. http://cn.bing.com/academic/profile?id=2076921505&encoded=0&v=paper_preview&mkt=zh-cn
    [38] 严实,赵金阳,陆夏美,等.基于声发射技术的三维编织复合材料低速冲击损伤分析[J].材料工程,2014(7):92-97. http://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201407018.htm

    YAN S,ZHAO J Y,LU X M, et al.Low velocity impact damage analysis of 3D braided composites based on acoustic emission technique[J].Journal of Materials Engineering,2014(7):92-97. http://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201407018.htm
    [39] 杜双明,乔生儒.3D-Cf/SiC复合材料在1500℃的拉-拉疲劳行为[J].材料工程,2011(5): 34-37. http://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201105007.htm

    DU S M,QIAO S R.Tensile and tensile fatigue behavior of 3D-Cf/SiC composites at 1500℃[J].Journal of Materials Engineering,2011(5): 34-37. http://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201105007.htm
  • 加载中
图(1) / 表(6)
计量
  • 文章访问数:  8135
  • HTML全文浏览量:  3117
  • PDF下载量:  250
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-22
  • 修回日期:  2016-03-16
  • 刊出日期:  2016-08-01

目录

    /

    返回文章
    返回

    《航空材料学报》关于谨防假冒期刊的郑重声明

    近期,有不法分子冒充《航空材料学报》期刊及官网,谎称提供论文发表服务,发布虚假约稿信息,骗取作者发表费用,为此,本编辑部郑重声明如下:

    1、http://www.hkclxb.cn 为假冒网站,与《航空材料学报》没有任何关系。我刊没有委托任何第三方机构或个人,代表我刊约稿或提供发表服务。

    2、《航空材料学报》为中文期刊,只接收中文文章投稿,目前不刊登英文文章。

    3. 本刊官网是http://jam.biam.ac.cn/,本刊的官方投稿方式为网上投稿(登录官网首页—作者投稿)。如有不明可电话咨询,联系电话是010-62496277。

    敬请广大读者和作者认真识别,谨防上当受骗。