Application and Research Status of Alternative Materials for 3D-printing Technology
-
摘要: 综述了3D打印领域内六种典型3D打印工艺各自所用的3D打印材料,从物理形态上主要包含液态光敏树脂材料、薄材(纸张、塑料膜)、低熔点丝材和粉末材料四种;从成分上则几乎涵盖了目前生产生活中的各类材料包括塑料、树脂、蜡等高分子材料,金属和合金材料,陶瓷材料等。立体光刻(Stereo Lithigraphy Apparatus,SLA)工艺的材料为感光性的液态树脂,即光敏树脂;叠层实体制造(Laminated Object Manufacturing,LOM)工艺的材料为纸张、塑料膜等薄材;熔融沉积成型(Fused Deposition Modeling,FDM)工艺的材料主要为便于熔融的低熔点丝状材料,主要为蜡丝、聚烯烃树脂丝、聚酰胺丝、ABS塑料丝等高分子材料;选择性激光烧结(Selective Laser Sintering,SLS)的材料是各类粉末,包括尼龙粉、覆裹尼龙的玻璃粉、聚碳酸脂粉、聚酰胺粉、蜡粉、金属粉(打印后常须进行再烧结及渗铜处理)、覆蜡陶瓷粉、覆蜡金属粉以及覆裹热凝树脂细沙等;选择性激光熔化(Selective Laser Melting,SLM)工艺使用与SLS一样的粉末材料,不仅具有SLS优点,而且成型件致密度更高,力学性能更好;三维打印与胶粘(Three Dimensional Printing and Gluing,3DP)工艺的材料同样为粉末材料,但这些粉末是通过喷头喷涂黏结剂被黏结在一起,同时将零件的截面"印刷"在材料粉末上面,类似于纸张彩色打印,可通过设置三原色黏结剂及喷头系统,实现彩色立体打印。对3D打印材料质量和产量的发展方向也进行了分析和展望。Abstract: Application features and research status of alternative 3D-printing materials for six typical 3D-printingtechniques were reviewed. From the point of view of physical forms, four kinds of materials of liquid photosensitive resin material, thin sheet material (paper or plastic film) , low melting point filament material and powder material are included. And from the composition point of view, nearly all kinds of materials in the production and life are included such as polymer materials: plastic, resin, wax; metal and alloy materials; ceramic materials. Liquid photosensitive resin material is used for stereo lithigraphy apparatus(SLA); thin sheet materials such as paper or plastic film are used for laminated object manufacturing(LOM); low melting point polymer filament materials such as wax filament, polyolefin resin filament, polyamide filament and ABS filament are used for fused deposition modeling(FDM); very wide variety powder materials including nylon powder, nylon-coated glass powder, polycarbonate powder, polyamide powder, wax powder, metal powder(Re-sintering and infiltration of copper are needed after sintering), wax-coated ceramic powder, wax-coated metal powder and thermosetting resin-coated fine sand are used for selective laser sintering(SLS). Nearly the same above powder materials are used for selective laser melting(SLM), but the printed parts own much more higher density and better mechanical properties. Powder materials are likewise used for threedimensional printing and gluing(3DP), however, the powders are stuck together by tricolor binder sprayed through nozzle and cross-section shape of the part is color-printed on it. Finally, the development direction in both quality and the yield of 3D-printing materials were pointed out to be a bottle-neck issue and a hot topic in the field of 3D-printing.
-
Key words:
- 3D-printing /
- material /
- application feature /
- development direction
-
表 1 SL系列树脂的性能参数
Table 1. Parameter of SL series resin
Index SL5195 SL5510 SL5530 SL7510 SL7540 SL7560 SL Y-C9300 Appearance Transparentand bright Transparentand bright Transparentand bright Transparentand bright Transparentand bright White Transparent Density/(g·cm-3) 1.16 1.13 1.19 1.17 1.14 1.18 1.12 Viscosity/(mPa·s)(30 ℃) 180 180 210 325 279 200 1090 Curing depth/mis 5.2 4.1 5.4 5.5 6.0 5.2 9.4 Critical radiation intensity/(mJ·cm-2) 13.1 11.4 8.9 10.9 8.7 5.4 8.4 Shore hardness 83 86 88 87 79 86 75 Tensile strength /MPa 46.5 77 56-61 44 38-39 42-46 45 Tensile modulus /MPa 2090 3296 2889-3144 2206 1538-1662 2400-2600 1315 Bending strength /MPa 49.3 99 63-87 82 48-52 83-104 — Bending modulus/MPa 1628 3054 2620-3240 2455 1372-1441 2400-2600 — Elongation rate/% 11 5.4 3.8-4.4 13.7 21.2-22.4 6-15 7 Impact strength/(J·m-1) 54 27 21 32 38.4-45.9 28-44 — Glass temperature /℃ 67-82 68 79 63 57 60 52 Thermal T<Tr 108 84 76 — 181 — — expansion rate/(10-6·℃-1) T>Tr 189 182 152 — — — — Thermal conductivity/(W·m-1·K-1) 0.182 0.181 0.173 0.175 0.159 — — Post cure density/(g·cm-3) 1.18 1.23 1.25 — 1.18 1.22 1.18 Note:1 mis=2.54×10-3mm 表 2 ACCURA系列树脂的性能参数
Table 2. Parameter of ACCURA series resin
Index ACCURASI 10 ACCURASI 20 ACCURASI 30 ACCURASI 40 Nd SLA Viper si2 SLA7000 SLA Viper si2 SLA7000 SLA Viper si2 SLA7000 SLA Viper si2 SLA7000 Appearance Transparent and bright Transparent and bright Transparent and bright Transparent and bright Density/(g·cm-3) 1.1 1.1 1.1 1.1 Viscosity/(mPa·s)(30℃) 485 450 100 485 Curing depth/mis 6.3 6.8 6.1 5.7 5.9 6.0 6.6 6.8 Criticalradiation intensity/(mJ·cm-2) 13.8 15.5 11.4 10.2 8.2 9.3 21.7 20.1 Shore hardness 83 86 88 87 79 86 Tensile strength /MPa 62-63 72-76 29.4-36.2 28-30 30.7-33.4 29.7-30.8 57.2-58.7 61.5-61.7 Bending strength/MPa 89-97 109-115 46.1-42.7 28-32 49.6-53.7 36.5-40.6 93.4-96.1 92.8-97 Elongation rate/% 3.1-5 4.9-5.6 13-27 18-23 14-20 13-23 4.8-5.1 4.9-5.1 Impact strength/(J·m-1) 18.7-27.7 14.9-17.1 34.8-36.9 32.1-36.3 16.6-42.3 21.4-40.7 22.5-27.2 22.3-29.9 Glass temperature/℃ 61.7 61.7 54 54 62 39 65.5 62 表 3 SOMOS系列树脂的性能参数
Table 3. Parameter of SOMOS series resin
Index ProtoTool 20L ProtoTool 12120 WaterShed 11120 WaterClear10120 9120 7120 Appearance Gray Cherry Transparentand bright Transparent and amber Transparentand amber Transparent and amber Density/(g·cm-3) 1.6 1.15 1.12 1.12 1.13 1.13 Viscosity/(mPa·s)(30℃) 2500 550 260 130 450 700 Curing depth/mis 4.7 6.0 6.5 5.6 6.1 4.8 Critical radiation intensity/(mJ·cm-2) 6.8 11.8 11.5 7.7 10.9 8.0 Shore hardness 92.8 85.3 N/A 83 80-82 88 Tensile strength/MPa 78 70.2 47.1-53.6 43 30-32 58 Tensile modulus/MPa 10900 3320 2650-2880 2190 1227-1462 2477 Bending strength/MPa 138 109 63.1-74.2 77.9 41-46 108 Bending modulus/MPa 9040 2620-3240 2040-2370 2370 1310-1455 2967 Elongation rate/% 1.2 4 11-20 18 15-25 2.1-6.9 Impact strength/(J·m-1) 14.5 11.5 20-30 31 48-53 27 Glass temperature/℃ 102 56.5 45.9-54.5 58 52-61 70 表 4 SLS工艺各型号打印材料的相关性能
Table 4. Parameter of various types of printing materials for SLS
Material Component Particle size/μm Infiltration treatment Mechanical property Purpose Tensile strength/MPa Hardness 3D System(DTM) Company Copper polyamide Copper/Polyamide N/A Y(Copper) 35.9 HRD75 Injection mold Rapid steel 1.0 Copper/Steel 55 Y(Copper) 475 HRB75 Injection mold Rapid steel 2.0 Copper/316L 45 Y(Copper) 580 HRC22 Injection mold Laser formST-100 Film coated stainless steel 23-34 Y(Copper) 510 HRB87 Metal parts and injection mold Laser formST-200 Film coated 420 N/A Y(Copper) 435 HRB79 Metal parts and injection mold Laser formA6 Film coated steel N/A N/A 610 HRC20 Injection mold and complex parts EOS Company EOSINT M Cu3201 Ni,CuSn,Cu3P 30 Y(Resin) 120 HB43-84 Injection mold Direct steel 50-V1 Steel 502 N 500 HB180-220 Functional parts and injection mold Direct steel 20-V1 Steel 20 N 600 HB150-250 Functional parts and injection mold Direct steel 50 Copper 50 Y(Resin) 200 HB90-120 Metal parts and injection mold Direct steel 20 Copper 20 N 400 N/A Metal parts and injection mold 表 5 Object 系统使用的类工程塑料打印材料的性能
Table 5. Parameter of similar engineering plastics for Object system
Parameter RGB 5160-DM RGD 525 Fullcure 720 Fullcure 840 Fullcure 430 MED 610 Basic characteristics ABS like High temperatureresistance Transparent Non-transparent PP like Transparent Tensile strength/MPa 55-60 70-80 50-65 50-60 20-30 50-65 Elongation rate/% — 10-15 15-25 15-25 40-50 10-25 Elastic modulus/MPa 2600-3000 3200-3500 2000-3000 2000-3000 1000-2000 2000-3000 Bending strength/MPa 65-75 110-130 80-110 60-70 30-40 75-110 Bending modulus/MPa 1700-2200 3100-3500 2700-3300 1900-2500 1200-1600 2200-3200 Heat deflection temperature/℃(0.45 MPa/1.82 MPa) 56-68/51-55 63-67/55-57 45-50/45-50 45-50/45-50 37-42/32-34 45-50 Impact strength/(J·m-1) 65-80 14-16 20-30 20-30 40-50 20-30 Glass temperature/℃ 47-53 62-65 48-50 48-50 35-37 N/A Shao’s temperature/℃ 85-87 87-88 83-86 83-86 74-78 83-86 表 6 Object 系统使用的类橡胶打印材料的性能
Table 6. Parameter of similar rubber for Object system
Parameter Fullcure980 & Fullcure930 Fullcure970 Fullcure950 Basic characteristics Rubber like Rubber like Rubber like Elongation rate/% 170-220 45-55 45-55 Tensile strength/MPa 0.8-1.5 1.8-2.4 3-5 Compression ratio/% 4-5 0.5-1.5 0.5-1.5 Shore hardness 26-28 60-62 73-77 Resistance to tearing/(kg·cm-1) 2-4 3-5 8-12 Post cure density/(g·cm-3) 1.12-1.13 1.12-1.13 1.16-1.17 -
[1] DANIEL G,BASTIAN H,FRANZ G,et al.Continuous 3D-printing for additive manufacturing[J].Rapid Prototyping Journal,2014,20(4):320-327. doi: 10.1108/RPJ-08-2012-0068 [2] 王广春,赵国群.快速成型与快速模具制造技术及其应用[M].第三版.北京:机械工业出版社,2009. [3] 黄树槐,肖跃加,莫健华,等.快速成形技术的展望[J].中国机械工程,2000(11):195-200. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX2000Z1049.htmHUANG S H,XIAO Y J,MO J H, et al.Prospect of rapid prototyping technology[J].China Mechanical Engineering,2000(11):195-200. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX2000Z1049.htm [4] 孙晓林.3D打印技术的应用[J].机电产品开发与创新,2013(4):108-109.SUN X L.Application of 3D printing technology[J].Development & Innovation of Machinery & Electrical Products,2013(4):108-109. [5] MENG X L,SHU B Z.Research on the application of 3D printing technology in the field of packaging[J]. Applied Mechanics and Materials, 2015, 731: 304-308. doi: 10.4028/www.scientific.net/AMM.731 [6] VAEZI M,SEIZ H,YANG S F.A review on 3D micro-additive manufacturing technologies[J].The International Journal of Advanced Manufacturing Technology,2013,67(5):1721-1754. http://cn.bing.com/academic/profile?id=2018566369&encoded=0&v=paper_preview&mkt=zh-cn [7] 段玉岗,王素琴,陈浩,等.激光快速成型中影响光固化材料收缩变形的研究[J].化学工程,2000,28(6):53-56. http://www.cnki.com.cn/Article/CJFDTOTAL-IMIY200006013.htmDUAN Y G,WANG S Q,CHEN H,et al.Study on shrinkage and deformation of light curing materials in laser rapid prototyping[J]. Chemical Engineering, 2000,28(6):53-56. http://www.cnki.com.cn/Article/CJFDTOTAL-IMIY200006013.htm [8] PU X,ZHANG J,DUMUR F,et al.Visible light sensitive photoinitiating systems:recent progress in cationic and radical photopolymerization reactions under soft conditions[J].Progress in Polymer Science,2015,41:32-66. doi: 10.1016/j.progpolymsci.2014.09.001 [9] KAREN LINDER.Tethon 3D releases new authentic porcelain ceramic resin for SLA/DLP 3D printers[N/OL].Prweb,2016-02-02[2016-6-14].http://www.prweb.com/releases/2016/02/prweb13194459.htm [10] 杨家林,王洋,陈杨.快速成型技术研究现状与发展趋势[J].新技术新工艺,2003(1):28-29. http://www.cnki.com.cn/Article/CJFDTOTAL-XJXG200301011.htmYANG J L,WANG Y,CHEN Y. Research status and development trend of rapid prototyping technology[J] .New Technology & New Process, 2003(1):28-29. http://www.cnki.com.cn/Article/CJFDTOTAL-XJXG200301011.htm [11] 荆慧.快速成型技术原理及成型精度分析[J].机械研究与应用.2013,26(2):183-187. http://www.cnki.com.cn/Article/CJFDTOTAL-JXYJ201302069.htmJING H. Principle of rapid prototyping technology and analysis of forming precision[J].Mechanical Research & Application,2013,26(2):183-187. http://www.cnki.com.cn/Article/CJFDTOTAL-JXYJ201302069.htm [12] 李宝强,方沂.熔融沉积快速成型工艺精度分析与研究[J].福建轻纺,2013(11):41-44. http://www.cnki.com.cn/Article/CJFDTOTAL-FJQF201311022.htmLI B Q,FANG Y.Analysis and research on the precision of fused deposition rapid prototyping process[J]. Fujian Textile,2013(11):41-44. http://www.cnki.com.cn/Article/CJFDTOTAL-FJQF201311022.htm [13] 吴涛,倪荣华,王广春.熔融沉积快速成型技术研究进展[J].科技视界,2013(34):94-95. http://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201334068.htmWU T,NING R H,WANG G C.Research progress of rapid prototyping technology[J].Science & Technology Vision,2013(34):94. http://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201334068.htm [14] JIANG C,ZHAO G F.A preliminary study of 3D printing on rock mechanics[J].Rock Mechanics and Rock Engineering,2015,48(3):1041-1050. doi: 10.1007/s00603-014-0612-y [15] TEKINALP P L,GREGORIO V K,CHADE V G, et al.Highly oriented carbon fiber-polymer composites via additive manufacturing[J].Composites Science and Technology,2014,105:144-150. doi: 10.1016/j.compscitech.2014.10.009 [16] GAO K,TAO Y,ZHANG K, et al.Research on common problems based on a desktop 3D printer[J].Applied Mechanics and Materials,2015,757:175-178. doi: 10.4028/www.scientific.net/AMM.757 [17] 张永忠,席明哲,石力开,等.激光快速成形316L不锈钢研究[J].材料工程,2002(5):22-24. http://www.cnki.com.cn/Article/CJFDTOTAL-CLGC200205005.htmZHANG Y Z,XI M Z,SHI L K,et al.Study on laser rapid forming 316L stainless steel[J].Journal of Materials Engineering,2002(5):22-24. http://www.cnki.com.cn/Article/CJFDTOTAL-CLGC200205005.htm [18] 陈志平.基于3D打印的直线导轨快速制造的应用研究[J].机械工程师,2014(3):24-25. http://www.cnki.com.cn/Article/CJFDTOTAL-JXGU201403027.htmCHEN Z P.Application research of linear guide rail rapid manufacture based on 3D printing[J].Mechanical Engineer,2014(3):24-25. http://www.cnki.com.cn/Article/CJFDTOTAL-JXGU201403027.htm [19] 孙建英.选择性激光烧结技术及其在模具制造领域的应用[J].煤矿机械,2006,27(7):112-113. http://www.cnki.com.cn/Article/CJFDTOTAL-MKJX200607052.htmSUN J Y.Selective laser sintering technology and its application in the field of die manufacturing[J].Coal Mining Machinery,2006,27(7):112-113. http://www.cnki.com.cn/Article/CJFDTOTAL-MKJX200607052.htm [20] 王伟,王璞璇,郭艳玲.选择性激光烧结后处理工艺技术研究现状[J].森林工程,2014,30(2):101-104. http://www.cnki.com.cn/Article/CJFDTOTAL-SSGC201402026.htmWANG W,WANG P X,GUO Y L.Research status of selective laser sintering process[J].Forest Engineering,2014,30(2):101-104. http://www.cnki.com.cn/Article/CJFDTOTAL-SSGC201402026.htm [21] GROSS B C,ERKAL J L,LOCKWOOD S Y,et al.Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences[J]. Anal Chem,2014,86(7):3240-3253. doi: 10.1021/ac403397r [22] MURPHYS V,ATALA A.3D bioprinting of tissues and organs[J].Nature Biotechnology,2014,32(8):773-785. doi: 10.1038/nbt.2958 [23] 鲁中良,史玉升,刘锦辉,等.间接选择性激光烧结与选择性激光熔化对比研究[J].铸造技术,2007,28(11):37-42. http://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS200711012.htmLU Z L,SHI Y S,LIU J H, et al.Comparative study of indirect selective laser sintering and selective laser melting[J].Casting Technology,2007,28(11):37-42. http://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS200711012.htm [24] 李瑞迪,魏青松,刘锦辉,等.选择性激光熔化成形关键基础问题的研究进展[J].航空制造技术,2012(5):18-23.LI R D,WEI Q S,LIU J H, et al.Research progress on key basic problems of selective laser melting[J]. Aeronautical Manufacturing Technology,2012(5):18-23. [25] SIMCHI A.Direct laser sintering of metal powders:mechanism,kinetics and microstructural features[J]. Materials Science and Engineering A, 2006,428(1/2):148-158. http://cn.bing.com/academic/profile?id=2000363357&encoded=0&v=paper_preview&mkt=zh-cn [26] HONG S,SANCHEZ C,DU H.Fabrication of 3D printed metal structures by use of high-viscosity Cu paste and a screw extruders[J].Journal of Electronic Materials,2015,44(3):836-841. doi: 10.1007/s11664-014-3601-8 [27] EOS company.Materials for metal additive manufacturing[EB/OL].[2016-6-14]http://www.eos.info/material-m. [28] 王华明,张述泉,王向明.大型钛合金结构件激光直接制造的进展与挑战[J].中国激光,2009,36(12):3204-3209. doi: 10.3788/JCLWANG H M,ZHANG S Q,WANG X M.Progress and challenges of laser direct manufacturing of large titanium alloy structural parts[J].China Laser,2009,36(12):3204-3209. doi: 10.3788/JCL [29] 常辉,周廉,王向东.我国钛工业与技术进展及展望[J].航空材料学报,2014,34(4):37-43. doi: 10.11868/j.issn.1005-5053.2014.4.003CHANG H,ZHOU L,WANG X D.Progress and prospect of titanium industry and technology in China[J].Journal of Aeronautical Materials,2014,34(4):37-43. doi: 10.11868/j.issn.1005-5053.2014.4.003 [30] 王华明,张述泉,汤海波,等.大型钛合金结构激光快速成形技术研究进展[J].航空精密制造技术,2008,44(6):28-30. http://www.cnki.com.cn/Article/CJFDTOTAL-HJZJ200806009.htmWANG H M,ZHANG S Q,TANG H B, et al.Research progress of laser rapid forming technology for large scale titanium alloy structure[J].Aviation Precision Manufacturing Technology,2008,44(6):28-30. http://www.cnki.com.cn/Article/CJFDTOTAL-HJZJ200806009.htm [31] 张立武,写旭,杨延涛.钛合金精密热成形技术在航空航天的应用进展[J].航空制造技术,2015,489(19):14-17. http://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201519003.htmZHANG L W,XIE X,YANG Y T.Progress in the application of titanium alloy precision hot forming technology in aerospace[J].Aeronautical Manufacturing Technology,2015,489(19):14-17. http://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201519003.htm [32] MA Y Z,YIN X W,FAN X M, et al.Near-net-shape fabrication of Ti3SiC2-based ceramics by three-dimensional printing[J].International Journal of Applied Ceramic Technology,2015,12(1):71-80. doi: 10.1111/ijac.12321 [33] FENG P,MENG X M,CHEN J F, et al.Mechanical properties of structures 3D printed with cementitious powders[J].Construction and Building Materials,2015,93:486-497. doi: 10.1016/j.conbuildmat.2015.05.132 [34] ZHOU J G.A new rapid tooling technique and its special binder study[J].Journal of Rapid Prototyping,1999(5):82-88. http://cn.bing.com/academic/profile?id=2143681275&encoded=0&v=paper_preview&mkt=zh-cn [35] PETER T,COLEMAN M,DONGHYUK K, et al.Research highlights: printing the future of microfabrications[J].Lab on a Chip,2014,14(9):1491-1495. doi: 10.1039/c4lc90023e [36] KIM Y,YOON C,HAM S, et al.Emissions of nanoparticles and gaseous material from 3D printer operation[J].Environ Sci Technol,2015, 49 (20):12044-12053. doi: 10.1021/acs.est.5b02805 [37] FARAHANI R D,CHIZARI K,THERRIALT D.Three-dimensional printing of freeform helical microstructures:a review[J].Nanoscale, 2014,6(8):1475-485. http://cn.bing.com/academic/profile?id=2076921505&encoded=0&v=paper_preview&mkt=zh-cn [38] 严实,赵金阳,陆夏美,等.基于声发射技术的三维编织复合材料低速冲击损伤分析[J].材料工程,2014(7):92-97. http://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201407018.htmYAN S,ZHAO J Y,LU X M, et al.Low velocity impact damage analysis of 3D braided composites based on acoustic emission technique[J].Journal of Materials Engineering,2014(7):92-97. http://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201407018.htm [39] 杜双明,乔生儒.3D-Cf/SiC复合材料在1500℃的拉-拉疲劳行为[J].材料工程,2011(5): 34-37. http://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201105007.htmDU S M,QIAO S R.Tensile and tensile fatigue behavior of 3D-Cf/SiC composites at 1500℃[J].Journal of Materials Engineering,2011(5): 34-37. http://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201105007.htm -