First-principle Calculations of Mechanical Properties of Al2Cu, Al2CuMg and MgZn2 Intermetallics in High Strength Aluminum Alloys
-
摘要: 采用第一性原理平面波赝势方法,计算Al-Zn-Mg-Cu系高强铝合金主要中间相Al2Cu,Al2CuMg和MgZn2的结合能、形成焓、弹性常数及态密度。计算结果表明:3相结合能按MgZn2 > Al2CuMg > Al2Cu顺序递减;形成焓按MgZn2 > Al2Cu > Al2CuMg顺序递减;Al2Cu具有很高的弹性模量,同时具有一定的塑性,可以作为合金的强化相;Al2CuMg是典型的脆性相,并表现出明显的各向异性,容易诱导产生裂纹;MgZn2具有良好的塑性,同时熔点较低,是合金的主要强化相;3相中均存在离子键的相互作用,提高了结构稳定性;通过适当降低Cu,Mg含量,提高Zn的含量,有利于生成MgZn2相,进一步提高合金的综合性能。Abstract: Structural stabilities, mechanical properties and electronic structures of Al2Cu, Al2CuMg and MgZn2 intermetallics in Al-Zn-Mg-Cu aluminum alloys were determined from the first-principle calculations by VASP based on the density functional theory. The results show that the cohesive energy (Ecoh) decreases in the order MgZn2 > Al2CuMg > Al2Cu, whereas the formation enthalpy (ΔH) decreases in the order MgZn2 > Al2Cu > Al2CuMg. Al2Cu can act as a strengthening phase for its ductile and high Young's modulus. The Al2CuMg phase exhibits elastic anisotropy and may act as a crack initiation point. MgZn2 has good plasticity and low melting point, which is the main strengthening phase in the Al-Zn-Mg-Cu aluminum alloys. Metallic bonding mode coexists with a fractional ionic interaction in Al2Cu, Al2CuMg and MgZn2, and that improves the structural stability. In order to improve the alloys' performance further, the generation of MgZn2 phase should be promoted by increasing Zn content while Mg and Cu contents are decreased properly.
-
Key words:
- high strength aluminum alloy /
- intermetallics /
- first-principles /
- mechanical properties
-
图 3 不同Cu含量的Al-Zn-Mg-Cu系高强铝合金力学性能[29]
Figure 3. Mechanical properties of Al-Zn-Mg-Cu high strength aluminum alloys with different Cu contents
表 1 Al2Cu,Al2CuMg和MgZn2三相的空间群、晶格参数、结合能及形成焓
Table 1. Space group,lattice parameters a0,cohesive energy Ecoh and formation enthalpy ΔH of the phases Al2Cu,Al2CuMg and MgZn2
Phase Space group Lattice parameter/nm Ecoh/(kJ·mol-1) ΔH/(kJ·mol-1) This work Others Al2Cu I4/MCM a=0.6058,c=0.4873 a=0.6067,c=0.4877[11]a=0.6057,c=0.4824[12] -353.181 -15.042 Al2CuMg CMCM a=0.4012,b=0.9293,c=0.7124 a=0.4010,b=0.9250,c=0.7150[13]a=0.4012,b=0.9265,c=0.7124[14] -307.587 -17.568 MgZn2 P63/MMC a=0.5208,c=0.8506 a=0.5222,c=0.8568[15]a=0.5221,c=0.8567[16] -132.628 -13.346 表 2 Al2Cu,Al2CuMg和MgZn2的弹性常数
Table 2. Calculated elastic constants of phases Al2Cu,Al2CuMg and MgZn2,Cij/GPa
Phase Source C11 C12 C13 C22 C23 C33 C44 C55 C66 Al2Cu This work 169.25 76.59 56.37 — — 183.64 31.45 — 45.23 Others[22] 186.18 71.54 79.20 — — 179.42 29.23 — 47.24 Al2CuMg This work 135.32 36.77 64.29 145.45 52.64 129.26 46.58 70.18 35.46 Others[5] 156.48 33.37 62.61 175.97 17.66 168.76 43.74 93.02 50.72 MgZn2 This work 110.97 45.33 36.06 — — 124.86 26.08 — — Others[23] 107.25 45.45 27.43 — — 126.40 27.70 — — 表 3 Al2Cu,Al2CuMg和MgZn2力学性能参数
Table 3. Calculated parameters of mechanical property of the phases Al2Cu,Al2CuMg and MgZn2
Phase Modulus/MPa B/G C11-C12 ν AU BV BR B GV GR G E Al2Cu 100.09 100.07 100.08 43.82 46.61 45.21 117.88 2.21 92.66 0.30 -0.30 Al2CuMg 79.71 62.52 71.12 47.53 44.89 46.21 113.96 1.54 98.55 0.23 0.57 MgZn2 64.63 64.62 64.62 32.29 31.14 31.71 81.77 2.04 65.64 0.29 0.18 Note: B—bulk modulus;G—shear modulus;E—elastic modulus;B/G—modulus' proportion;C11-C12—elastic constants' difference;ν—Poisson's ratio;Au—universal elastic anisotropy index. 表 4 Al2Cu,Al2CuMg和MgZn2 3相的Bader电荷
Table 4. Calculated Bader charge of Al2Cu,Al2CuMg and MgZn2
Phase Atom Charge/e Atomic volume/10-3nm3 Al2Cu Al 2.154 12.585 Al 2.174 12.704 Cu 12.672 19.510 Al2CuMg Al 2.487 16.152 Al 2.490 16.174 Cu 13.502 27.032 Mg 0.520 7.033 MgZn2 Mg 0.560 7.613 Zn 12.783 21.590 Zn 12.695 21.007 -
[1] 方华婵, 陈康华, 巢宏, 等. Al-Zn-Mg-Cu系超强铝合金的研究现状与展望[J]. 粉末冶金材料科学与工程, 2009, 14(6): 351-358. http://www.cnki.com.cn/Article/CJFDTOTAL-FMGC200906002.htmFANG H C, CHEN K H, CHAO H, et al. Current research status and prospects of ultra strength Al-Zn-Mg-Cu aluminum alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2009, 14(6): 351-358.) http://www.cnki.com.cn/Article/CJFDTOTAL-FMGC200906002.htm [2] 王祝堂, 田荣璋. 铝合金及其加工手册[M]. 长沙: 中南工业大学出版社, 2000: 262-264. [3] 张新明, 邓运来, 张勇. 高强铝合金的发展及其材料的制备加工技术[J]. 金属学报, 2015, 51(3): 257-271. http://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201503001.htmZHANG X M, DENG Y L, ZHANG Y. Development of high strength aluminum alloys and processing techniques for the materials[J]. Acta Metallurgica Sinica, 2015, 51(3): 257-271.) http://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201503001.htm [4] 杨修波. Al-Zn-Mg(Cu)合金的热处理、微观结构与性能研究[D]. 长沙: 湖南大学, 2014.YANG X B. Research on microstructures and properties of Al-Zn-Mg (Cu) alloy after different heat treatment[D]. Changsha: Hunan University, 2014.) [5] ZHANG J, HUANG Y N, MAO C, et al. Structural, elastic and electronic properties of θ (Al2Cu) and S (Al2CuMg) strengthening precipitates in Al-Cu-Mg series alloys: First-principles calculations[J]. Solid State Communications, 2012, 152(23): 2100-2104. doi: 10.1016/j.ssc.2012.09.003 [6] 韩逸, 李炼, 邓桢桢, 等. 热力学计算优化Al-Zn-Mg-Cu合金成分[J]. 中国有色金属学报, 2011, 21(1): 179-184. doi: 10.1016/S1003-6326(11)60696-1HAN Y, LI L, DENG Z Z, et al. Constituent optimization of Al-Zn-Mg-Cu alloy based on thermodynamic calculation method[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(1): 179-184.) doi: 10.1016/S1003-6326(11)60696-1 [7] FURTHMÜLLER J, KRESSE G. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186. doi: 10.1103/PhysRevB.54.11169 [8] JOUBERT D, KRESSE G. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775. doi: 10.1103/PhysRevB.59.1758 [9] BURKE K, ERNZERHOF M, PERDEW J P. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. doi: 10.1103/PhysRevLett.77.3865 [10] PACK J D, MONKHORST H J. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192. doi: 10.1103/PhysRevB.13.5188 [11] GRIN Y, WAGNER F R, ARMBRVSTER M, et al. CuAl2 revisited: composition, crystal structure, chemical bonding, compressibility and Raman spectroscopy[J]. Journal of Solid State Chemistry, 2006, 179(6): 1707-1719. doi: 10.1016/j.jssc.2006.03.006 [12] CHEN H, YANG L, LONG J. First-principles investigation of the elastic, Vickers hardness and thermodynamic properties of Al-Cu intermetallic compounds[J]. Superlattices and Microstructures, 2015, 79(2): 156-165. http://cn.bing.com/academic/profile?id=2088394626&encoded=0&v=paper_preview&mkt=zh-cn [13] CALVERT L D, VILLARS P. Pearson's handbook of crystallographic data for intermetallic phases[M]. OH: ASM, Materials Park, 1991. [14] HEYING B, HOFFMANN R D, POETTGEN R. Structure refinement of the S-phase precipitate MgCuAl2[J]. Chem Inform, 2005, 36(33): 491-494. [15] YANG J, WANG J L, WU Y M, et al. Extended application of edge-to-edge matching model to HCP/HCP (α-Mg/MgZn2) system in magnesium alloys[J]. Materials Science and Engineering: A, 2007, 460/461(5): 296-300. http://cn.bing.com/academic/profile?id=1988643461&encoded=0&v=paper_preview&mkt=zh-cn [16] KOMURA Y, TOKUNAGA K. Structural studies of stacking variants in Mg-base Friauf-Laves phases[J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1980, 36(7): 1548-1554. doi: 10.1107/S0567740880006565 [17] 刘俊涛, 张永安, 李锡武, 等. Al-9.5 Zn-2.0 Mg-1.7 Cu合金的热力学计算[J]. 航空材料学报, 2013, 33(6): 1-7. http://jam.biam.ac.cn/CN/article/searchArticleResult.do#1LIU J T, ZHANG Y A, LI X W, et al. Thermodynamic calculation of Al-9.5Zn-2.0Mg-1.7Cu alloy[J]. Journal of Aeronautical Materials, 2013, 33(6): 1-7.) http://jam.biam.ac.cn/CN/article/searchArticleResult.do#1 [18] HILL R. The elastic behaviour of a crystalline aggregate[J]. Proceedings of the Physical Society A, 1952, 65(5): 349-357. doi: 10.1088/0370-1298/65/5/307 [19] WATT J P, PESELNICK L. Clarification of the Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with hexagonal, trigonal, and tetragonal symmetries[J]. Journal of Applied Physics, 1980, 51(3): 1525-1531. doi: 10.1063/1.327804 [20] WATT J P. Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with orthorhombic symmetry[J]. Journal of Applied Physics, 1979, 50(10): 6290-6295. doi: 10.1063/1.325768 [21] BORN M, HUANG K. Dynamical theory of crystal lattices[M]. Oxford: Oxford University Press, 1998. [22] ESHELMAN F R, SMITH J F. Single-crystal elastic constants of Al2Cu[J]. Journal of Applied Physics, 1978, 49(6): 3284-3288. doi: 10.1063/1.325278 [23] SEIDENKRANZ T, HEGENBARTH E. Single-crystal elastic constants of MgZn2 in the temperature range from 4.2 to 300 K[J]. Physica Status Solidi A, 1976, 33(1): 205-210. doi: 10.1002/(ISSN)1521-396X [24] PUGH S F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367): 823-843. doi: 10.1080/14786440808520496 [25] RANGANATHAN S I, OSTOJA-STARZEWSKI M. Universal elastic anisotropy index[J]. Physical Review Letters, 2008, 101(5): 055504. doi: 10.1103/PhysRevLett.101.055504 [26] TANG W, SANVILLE E, HENKELMAN G. A grid-based Bader analysis algorithm without lattice bias[J]. Journal of Physics: Condensed Matter, 2009, 21(8): 84204-84211. doi: 10.1088/0953-8984/21/8/084204 [27] 刘晓涛, 崔建忠. Al-Zn-Mg-Cu系超高强铝合金的研究进展[J]. 材料导报, 2005, 19(3): 47-51. http://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200503013.htmLIU X T, CUI J Z. Progress in research on ultra high strength Al-Zn-Mg-Cu alloy[J]. Materials Review, 2005, 19(3): 47-51.) http://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200503013.htm [28] LI C M, CHEN Z Q, ZENG S M, et al. Intermetallic phase formation and evolution during homogenization and solution in Al-Zn-Mg-Cu alloys[J]. Science China Technological Sciences, 2013, 56(11): 2827-2838. doi: 10.1007/s11431-013-5356-5 [29] 樊喜刚, 蒋大鸣, 单长智, 等. Cu含量对Al-Zn-Mg-Cu合金的组织性能和断裂行为的影响[J]. 轻合金加工技术, 2006, 34(2): 31-35. http://www.cnki.com.cn/Article/CJFDTOTAL-QHJJ200602010.htmFAN X G, JIANG D M, SHAN C Z, et al. Effect of copper content on the properties and fracture behavior in Al-Zn-Mg-Cu alloys[J]. Light Alloy Fabrication Technology, 2006, 34(2): 31-35.) http://www.cnki.com.cn/Article/CJFDTOTAL-QHJJ200602010.htm [30] MARLAUD T, DDESCHAMPS A, BLEY F, et al. Influence of alloy composition and heat treatment on precipitate composition in Al-Zn-Mg-Cu alloys[J]. Acta Materialia, 2010, 58(1): 248-260. doi: 10.1016/j.actamat.2009.09.003 [31] FANG X, SONG M, LI K, et al. Effects of Cu and Al on the crystal structure and composition of η (MgZn2) phase in over-aged Al-Zn-Mg-Cu alloys[J]. Journal of Materials Science, 2012, 47(14): 5419-5427. doi: 10.1007/s10853-012-6428-9 [32] CHEN K, LIU H, ZHANG Z, et al. The improvement of constituent dissolution and mechanical properties of 7055 aluminum alloy by stepped heat treatments[J]. Journal of Materials Processing Technology, 2003, 142(1): 190-196. doi: 10.1016/S0924-0136(03)00597-1 -