钛合金3D打印成形技术及缺陷

唐超兰 温竟青 张伟祥 楚瑞坤 孙梅

唐超兰, 温竟青, 张伟祥, 楚瑞坤, 孙梅. 钛合金3D打印成形技术及缺陷[J]. 航空材料学报, 2019, 39(1): 38-47. doi: 10.11868/j.issn.1005-5053.2017.000186
引用本文: 唐超兰, 温竟青, 张伟祥, 楚瑞坤, 孙梅. 钛合金3D打印成形技术及缺陷[J]. 航空材料学报, 2019, 39(1): 38-47. doi: 10.11868/j.issn.1005-5053.2017.000186
Chaolan TANG, Jingqing WEN, Weixiang ZHANG, Ruikun CHU, Mei SUN. 3D printing technology for titanium alloy and its defect[J]. Journal of Aeronautical Materials, 2019, 39(1): 38-47. doi: 10.11868/j.issn.1005-5053.2017.000186
Citation: Chaolan TANG, Jingqing WEN, Weixiang ZHANG, Ruikun CHU, Mei SUN. 3D printing technology for titanium alloy and its defect[J]. Journal of Aeronautical Materials, 2019, 39(1): 38-47. doi: 10.11868/j.issn.1005-5053.2017.000186

钛合金3D打印成形技术及缺陷

doi: 10.11868/j.issn.1005-5053.2017.000186
基金项目: 国家国际科技合作专项项目(2014DFA50700)
详细信息
    通讯作者:

    唐超兰(1969—),女,教授,主要从事金属材料的压力加工研究,(E-mail)tangchl@gdut.edu.cn

  • 中图分类号: TG146.2+3

3D printing technology for titanium alloy and its defect

  • 摘要: 介绍了3D打印技术的发展概况、基本原理和技术特点。综述了国内外几种常用的钛合金3D打印技术:激光选区烧结成形技术(SLS)、激光选区熔化成形技术(SLM)、激光立体成形技术(LSF)、电子束选区熔化成形技术(EBSM)、电子束熔丝沉积成形技术(EBF3)等,综合比较,EBSM技术由于具有成形效率高、精度高、成本低和真空无污染等优点,是未来最具发展前景的钛合金3D打印技术。成形过程中缺陷的成因和检测是3D打印领域重要研究热点,也是3D打印件能否实现应用的基础。重点介绍了钛合金3D打印成形过程中主要缺陷(包括球化现象、裂纹、孔隙以及翘曲变形)的分类、危害和成因,以及3D打印件常用的无损检测技术,并结合国内外研究情况对各种缺陷的抑制或改善方法进行探讨。最后,从材料、设备、工艺和检测技术方面,对未来钛合金3D打印技术发展前景进行了展望。

     

  • 图  1  金属3D打印成形过程中常见的缺陷 (a)球化;(b)翘曲;(c)孔隙;(d)裂纹

    Figure  1.  Common defects in metal 3D printing forming (a) spheroidization;(b) warpage;(c) pore;(d) crack

    图  2  液态金属与固态金属的润湿示意图

    Figure  2.  Schematic diagram of wetting between liquid metal and solid metal

    图  3  激光3D打印TC4钛合金工件根部裂纹的特征形貌 (a)裂纹头部;(b)裂纹根部

    Figure  3.  Characteristics of cracks in root of TC4 titanium alloy by laser 3D printing (a) crack head;(b) crack root

    图  4  激光选区熔化成形过程的翘曲变形原理示意图

    Figure  4.  Schematic diagram of warping in laser selective melting process

    表  1  几种常见主流的钛合金3D打印技术比较

    Table  1.   Comparison of 3D printing technologies of several popular titanium alloys

    Forming technology Heat source Power State Support structural Forming precision Scope of application
    SLS Laser Dozens of watts Powder No Low Small and medium complex structural parts
    SLM Laser Hundreds of watts Powder No High Small and medium complex structural parts
    LSF Laser Thousands of watts Powder/silk material Yes Low Large and medium sized simple structural parts
    EBSM Electron beam Tens of kilowatts Powder No High Large medium and small structural parts
    EBF3 Electron beam Tens of kilowatts Silk material Yes Low Large and medium structural parts
    下载: 导出CSV

    表  2  几种常见的无损检测技术比较[20-24]

    Table  2.   Comparison of several common nondestructive testing techniques[20-24]

    Test method Principle Scope of application, advantages and disadvantages
    Osmotic detection Capillary phenomenon at workpiece defect and wetting effect of permeating liquid
    on defect surface are utilized.
    The method is simple, low cost, suitable for non-ferrous metal, black metal, non-metal and other complex shaped structural parts, but not suitable for porous materials. It can only detect surface defects, not detect internal defects.
    Magnetic powder detection Using magnetic phenomena, magnetic flux leakage interacts with magnetic particles at defect, showing position, shape and size of defect. The equipment is simple, easy to operate, visual and rapid observation of defects, and has a higher detection sensitivity; but it is limited to ferromagnetic materials, and can not be used to detect internal defects.
    Ultrasonic detection Amplitude envelope information is used to reflect characteristics of measured medium. It has the advantages of simple equipment, low cost, wide application range, large detection depth, high sensitivity and accurate positioning. It can detect both surface defects and internal defects.
    Industrial CT Based on principle of radiation imaging, non-contact 3D high-precision scanning imaging of the product is realized, and the high-precision 3D tomographic data and information are obtained. CT testing is almost applicable to the defect detection of complex structural parts. It can directly reflect the location, size and type of the defect. It has high accuracy and reliability. It can also be used to measure the dimension accuracy. However, the price of CT testing is more expensive.
    Laser ultrasound The defect is detected by amplitude change of laser induced ultrasonic surface wave. It is especially suitable for on-line real-time inspection of complex shaped parts in manufacturing process because of its low requirement for inspection environment.
    下载: 导出CSV
  • [1] 乔旭. 钛合金增材制造技术的分析和未来趋势[J]. 中国新技术新产品,2015(23):76 doi: 10.3969/j.issn.1673-9957.2015.23.068

    QIAO X. Analysis and future trend of titanium alloy augmentation manufacturing technology[J]. New Technology and New Products in China,2015(23):76.) doi: 10.3969/j.issn.1673-9957.2015.23.068
    [2] 伏欣. 国内增材制造(3D打印)技术发展现状与研究趋势[J]. 中国高新技术企业,2016(24):27-28

    FU X. The development status and research trend of domestic augmented material manufacturing(3D printing)technology[J]. China Hi-tech Enterprise,2016(24):27-28.)
    [3] 谭语夷. 3D打印的技术现状与发展趋势[J]. 中国机械,2014(11):55

    TAN Y Y. The technical status and development trend of 3D printing[J]. China Machinery,2014(11):55.)
    [4] 孙镇镇. 3D打印材料及其发展问题与趋势[J]. 中国粉体工业,2016(1):4-6

    SUN Z Z. 3D printing materials and their development problems and trends[J]. China’s Powder Industry,2016(1):4-6.)
    [5] YEONG W Y,CHUA C K,LEONG K F,et al. Rapid prototyping in tissue engineering:challenges and potential[J]. Trends in Biotechnology,2004,22(12):643-652 doi: 10.1016/j.tibtech.2004.10.004
    [6] 曾亮华,刘继常. 金属3D打印技术的发展分析[J]. 机械工程师,2016(3):42-44 doi: 10.3969/j.issn.1002-2333.2016.03.018

    ZENG L H,LIU J C. Development of metal 3D printing technology analysis[J]. Mechanical Engineer,2016(3):42-44.) doi: 10.3969/j.issn.1002-2333.2016.03.018
    [7] 李涤尘,田小永,王永信. 增材制造技术的发展[J]. 电加工与模具,2012(增刊 1):20-22 doi: 10.3969/j.issn.1009-279X.2012.z1.002

    LI D C,TIAN X Y,WANG Y X. Development of additive materials manufacturing technology[J]. Electrical Machining and Die,2012(Suppl 1):20-22.) doi: 10.3969/j.issn.1009-279X.2012.z1.002
    [8] 祁斌. 3D打印技术在船舶领域的应用[J]. 中国船检,2016(6):94-100 doi: 10.3969/j.issn.1009-2005.2016.06.022

    QI B. Application of 3D printing technology in ship field[J]. China Ship Inspection,2016(6):94-100.) doi: 10.3969/j.issn.1009-2005.2016.06.022
    [9] 杨强,鲁中良,黄福享,等. 激光增材制造技术的研究现状及发展趋势[J]. 航空制造技术,2016,507(12):26-31

    YANG Q,LU Z L,HUANG F X,et al. Research status and development trend of laser augmentation manufacturing technology[J]. Aviation Manufacturing Technology,2016,507(12):26-31.)
    [10] 闫占功,林峰,齐海波,等. 直接金属快速成形制造技术综述[J]. 机械工程学报,2005,41(11):1-7 doi: 10.3321/j.issn:0577-6686.2005.11.001

    YAN Z G,LIN F,QI H B,et al. Summary of direct metal rapid prototyping manufacturing technology[J]. Journal of Mechanical Engineering,2005,41(11):1-7.) doi: 10.3321/j.issn:0577-6686.2005.11.001
    [11] 钱九红. 航空航天用新型钛合金的研究发展及应用[J]. 稀有金属,2000,24(3):218-223 doi: 10.3969/j.issn.0258-7076.2000.03.012

    QIAN J H. Development and application of new titanium alloys for aerospace[J]. Rare Metals,2000,24(3):218-223.) doi: 10.3969/j.issn.0258-7076.2000.03.012
    [12] SALLICA L E,JARDINI A L,FOGAGNOLO J B. Microstructure and mechanical behavior of porous Ti-6Al-4V parts obtained by selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials,2013,3(26):98-108
    [13] BIRSER E M,MOSKYITIN G V,POLYAKOV A N,et al. Industrial laser cladding: current state and future[J]. Welding Imeraatonal,2011,25(3):234-243
    [14] KRUTH J P,FROYEN L,VAEMBERGH J V,et al. Selective laser melting of iron based powder[J]. Journal of Materials Processing Technology,2004,149(1-3):616-622 doi: 10.1016/j.jmatprotec.2003.11.051
    [15] 胡孝昀,沈以赴,李子全,等. 金属粉末激光快速成形的工艺及材料成形性[J]. 材料科学与工艺,2008,16(3):378-383 doi: 10.3969/j.issn.1005-0299.2008.03.020

    HU X Y,SHEN Y F,LI Z Q,et al. Processing and material formability of metal powder laser rapid prototyping[J]. Material Science and Technology,2008,16(3):378-383.) doi: 10.3969/j.issn.1005-0299.2008.03.020
    [16] 陈济轮,杨洁,于海静. 国外高能束增材制造技术应用现状与最新发展[J]. 航天制造技术,2014(4):1-4+10 doi: 10.3969/j.issn.1674-5108.2014.04.017

    CHEN J L,YANG J,YU H J. The abroad application and latest development of high-energy beam additive manufacturing technology[J]. Space Manufacturing Technology,2014(4):1-4+10.) doi: 10.3969/j.issn.1674-5108.2014.04.017
    [17] 刘海涛,赵万华,唐一平. 电子束熔融直接金属成形工艺的研究[J]. 西安交通大学学报,2007,41(11):1126

    LIU H T,ZHAO W H,TANG Y P. Study on direct metal forming by electron beam melting[J]. Journal of Xi’an Jiaotong University,2007,41(11):1126.)
    [18] 陈哲源,锁红波,李晋炜. 电子束熔丝沉积快速制造成形技术与组织特征[J]. 航天制造技术,2010(1):40-43

    CHEN Z Y,SOU H B,LI J W. Rapid prototyping and microstructure characteristics of electron beam fuse deposition[J]. Space Manufacturing Technology,2010(1):40-43.)
    [19] 黄秋实,李良琦,高彬彬. 国外金属零部件增材制造技术发展概述[J]. 国防制造技术,2012(5):28-31

    HUANG Q S,LI L Q,GAO B B. Overview of the development of foreign metal parts manufacturing technology[J]. National Defense Manufacturing Technology,2012(5):28-31.)
    [20] 杨平华,高祥熙,梁菁,等. 金属增材制造技术发展动向及无损检测研究进展[J]. 材料工程,2017,45(9):13-21

    YANG P H,GAO X X,LIANG J,et al. Development trend of metal additive manufacturing technology and research progress of nondestructive testing[J]. Materials Engineering,2017,45(9):13-21.)
    [21] 赵静. 机械零件缺陷的无损检测方法发展趋势[J]. 农业装备与车辆工程,2005(9):39-40 doi: 10.3969/j.issn.1673-3142.2005.09.015

    ZHAO J. Development trend of nondestructive testing methods for defects of mechanical parts[J]. Agricultural Equipment and Vehicle Engineering,2005(9):39-40.) doi: 10.3969/j.issn.1673-3142.2005.09.015
    [22] 肖永顺, 王凤娟. 工业CT在3D打印领域的新应用[C]//全国射线数字成像与CT新技术研讨会. 厦门: [出版者不详], 2014.

    XIAO Y S, WANG F J. New applications of industrial CT in 3D printing[C]//National Symposium on Radiographic Digital Imaging and CT New Technologies. Xiamen, China: [s.n], 2014.
    [23] PLESSIS A D,ROUX S G L,ELS J,et al. Application of microCT to the non-destructive testing of an additive manufactured titanium component[J]. Case Studies in Nondestructive Testing & Evaluation,2015,4(11):1-7
    [24] 王晓, 史亦韦, 梁菁, 等. 激光超声在线无损检测增材制造零件的方法: CN106018288A[P]. 2016-06-17.

    WANG X, SHI Y W, LIANG J, et al. Methods of on-line laser ultrasonic nondestructive testing of augmented materials for manufacturing parts: CN106018288A[P]. 2016-06-17.
    [25] GU D,SHEN Y. Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods[J]. Materials & Design,2009,30(8):2903-2910
    [26] 李瑞迪,魏青松,刘锦辉,等. 选择性激光熔化成形关键基础问题的研究进展[J]. 航空制造技术,2012,401(5):26-31 doi: 10.3969/j.issn.1671-833X.2012.05.001

    LI R D,WEI Q S,LIU J H,et al. Research progress on key basic problems of selective laser melting forming[J]. Aviation Manufacturing Technology,2012,401(5):26-31.) doi: 10.3969/j.issn.1671-833X.2012.05.001
    [27] 张晓博. Ti合金选择性激光熔化成形关键技术的研究[D]. 西安: 陕西科技大学, 2015.

    ZHANG X B. Research on key technologies of selective laser melting of Ti alloy[D]. Xi’an: Shaanxi University of Science and Technology, 2015.
    [28] GUSAROV A V,YADROITSEV I,BERTRAND P,et al. Heat transfer modelling and stability analysis of selective laser melting[J]. Applied Surface Science,2007,254(4):975-979 doi: 10.1016/j.apsusc.2007.08.074
    [29] RAYLEIGH L. On the instability of a cylinder of viscous liquid under capillary force[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science ,2010,34(207):177-180
    [30] GONG H,RAFI K,GU H,et al. Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes[J]. Additive Manufacturing,2014(Suppl 1/2/3/4):87-98
    [31] 薛蕾,陈静,张凤英,等. 飞机用钛合金零件的激光快速修复[J]. 稀有金属材料与工程,2006,35(11):1817-1821 doi: 10.3321/j.issn:1002-185X.2006.11.033

    XUE L,CHEN J,ZHANG F Y,et al. Rapid laser repair of titanium alloy parts for aircraft[J]. Rare Metal Materials and Engineering,2006,35(11):1817-1821.) doi: 10.3321/j.issn:1002-185X.2006.11.033
    [32] ZAEH M F,KAHNERT M. The effect of scanning strategies on electron beam sintering[J]. Production Engineering,2009,3(3):217-224 doi: 10.1007/s11740-009-0157-1
    [33] 周旭,周燕,魏青松,等. 激光选区熔化近α钛合金开裂机理及抑制研究[J]. 中国机械工程,2015,26(20):2816-2820 doi: 10.3969/j.issn.1004-132X.2015.20.021

    ZHOU X,ZHOU Y,WEI Q S,et al. Study on cracking mechanism and inhibition of near-alpha titanium alloy by selective laser melting[J]. China Mechanical Engineering,2015,26(20):2816-2820.) doi: 10.3969/j.issn.1004-132X.2015.20.021
    [34] 张升,桂睿智,魏青松,等. 选择性激光熔化成形TC4钛合金开裂行为及其机理研究[J]. 机械工程学报,2013,49(23):21-27

    ZHANG S,GUI R Z,WEI Q S,et al. Study on cracking behavior and mechanism of selective laser melting forming of TC4 titanium alloy[J]. Journal of Mechanical Engineering,2013,49(23):21-27.)
    [35] LUKAS L,FRANK P S,UTA K,et al. Selective laser melting of a bete-solidifying TNM-B1 titaniun aluminide alloy[J]. Journal of Materials Processing Technology,2014(214):1852-1860
    [36] 张凤英,陈静,谭华,等. 钛合金激光快速成形过程中缺陷形成机理研究[J]. 稀有金属材料与工程,2007,36(2):211-215 doi: 10.3321/j.issn:1002-185x.2007.02.006

    ZHANG F Y,CHEN J,TAN H,et al. Study on the defect formation mechanism in laser rapid prototyping of titanium alloys[J]. Rare Metal Materials and Engineering,2007,36(2):211-215.) doi: 10.3321/j.issn:1002-185x.2007.02.006
    [37] 刘延辉,瞿伟成,朱小刚,等. 激光3D打印TC4钛合金工件根部裂纹成因分析[J]. 理化检验: 物理分册,2016,52(10):682-685

    LIU Y H,QU W C,ZHU X G,et al. Cause analysis of cracks in the root of TC4 titanium alloy workpiece during laser 3D printing[J]. Physical and Chemical Examination:Physical Scroll,2016,52(10):682-685.)
    [38] 刘彦涛,张永忠,陈以强,等. 激光熔化沉积TA15+Ti2AlNb合金的组织与力学性能[J]. 航空材料学报,2017,37(3):61-67

    LIU Y T,ZHANG Y Z,CHEN Y Q,et al. Microstructure and mechanical properties of laser melting deposited TA15+Ti2AlNb alloys[J]. Journal of Aeronautical Materials,2017,37(3):61-67.)
    [39] 帅昌俊. 选择性激光烧结翘曲变形抑制研究[D]. 武汉: 华中科技大学, 2007.

    SHUAI C J. Study on inhibition of warpage of selective laser sintering[D]. Wuhan: Huazhong University of Science and Technology, 2007.
    [40] 吴伟辉,杨永强,毛星,等. 激光选区熔化增材制造金属零件精度优化工艺分析[J]. 铸造技术,2016(12):2636-2640

    WU W H,YANG Y Q,MAO X,et al. Process optimization for precision manufacturing of metal parts by laser selective melting and addition[J]. Casting Technology,2016(12):2636-2640.)
    [41] 齐海波,杨明辉,齐芳娟. 扫描路径对电子束选区熔化TC4成形件性能影响的数值模拟[J]. 焊接学报,2009,30(8):5-8 doi: 10.3321/j.issn:0253-360X.2009.08.002

    QI H B,YANG M H,QI F J. Numerical simulation of the effect of scanning path on the properties of electrically melted TC4 parts[J]. Acta Welding,2009,30(8):5-8.) doi: 10.3321/j.issn:0253-360X.2009.08.002
    [42] 杨立宁,单忠德,戎文娟,等. 金属件熔融堆积3D打印过程热应力场数值模拟[J]. 铸造技术,2016(4):753-758

    YANG L N,SHAN Z D,RONG W J,et al. Numerical simulation of thermal stress field in 3D printing process of metal melt deposition[J]. Foundry Technology,2016(4):753-758.)
    [43] 李守卫,沈以赴,顾冬冬,等. 选择性激光烧结金属件翘曲与开裂问题的研究进展[J]. 激光杂志,2005,26(5):4-6 doi: 10.3969/j.issn.0253-2743.2005.05.002

    LI S W,SHEN Y F,GU D D,et al. Progress in research on warpage and cracking of metal parts in selective laser sintering[J]. Laser Journal,2005,26(5):4-6.) doi: 10.3969/j.issn.0253-2743.2005.05.002
    [44] FISHCHER P,ROMANO V,WEBER H P,et al. Sintering of commercially pure titanium powder with a Nd: YAG laser source[J]. Acta Materialia,2003,51(6):1651-1662 doi: 10.1016/S1359-6454(02)00567-0
    [45] CORMIER D,HARRYSSON O,WEST H. Characterization of H13 steel produced via electron beam melting[J]. Rapid Prototyping Journal,2004,10(1):35-41 doi: 10.1108/13552540410512516
    [46] 张永志,侯慧鹏,彭霜,等. 激光选区熔化Hastelloy X合金的显微组织与拉伸性能的各向异性[J]. 航空材料学报,2018,38(6):50-56

    ZHANG Y Z,HOU H P,PENG S,et al. Anisotropy of microstructure and mechanical properties of Hastelloy X alloy produced by selective laser melting[J]. Journal of Aeronautical Materials,2018,38(6):50-56.)
    [47] 梁晓康,陈济轮,严振宇,等. 激光选区熔化成形TC4钛合金表面粘粉及残余应力研究[J]. 电加工与模具,2016(5):52-55 doi: 10.3969/j.issn.1009-279X.2016.05.010

    LIANG X K,CHEN J L,YAN Z Y,et al. Study on surface adhesive powder and residual stress of TC4 titanium alloy formed by laser selective melting[J]. Electromachining and Mold,2016(5):52-55.) doi: 10.3969/j.issn.1009-279X.2016.05.010
    [48] 陈静,杨海欧,汤慧萍,等. 成形气氛中氧含量对TC4钛合金激光快速成形工艺的影响[J]. 中国材料进展,2004,23(3):23-26 doi: 10.3969/j.issn.1674-3962.2004.03.006

    CHEN J,YANG H O,TANG H P,et al. Effect of oxygen content in forming atmosphere on laser rapid prototyping process of TC4 titanium alloy[J]. Progress of Materials in China,2004,23(3):23-26.) doi: 10.3969/j.issn.1674-3962.2004.03.006
    [49] 傅蔡安,陈佩胡. 选择性激光烧结的翘曲变形与扫描方式的研究[J]. 铸造,2008,57(12):1237-1240

    FU C A,CHEN P H. Study on warpage deformation and scanning mode of selective laser sintering[J]. Casting,2008,57(12):1237-1240.)
    [50] 汤慧萍,王建,逯圣路,等. 电子束选区熔化成形技术研究进展[J]. 中国材料进展,2015,34(3):225-235

    TANG H P,WANG J,LU S L,et al. Research progress of electron beam selective melting technology[J]. Progress in Materials in China,2015,34(3):225-235.)
    [51] TANG H P,YANG G Y,JIA W P,et al. Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting[J]. Materials Science & Engineering:A,2015,636:103-107
    [52] 张霜银,林鑫,陈静,等. 热处理对激光立体成形TC4残余应力的影响[J]. 稀有金属材料与工程,2009,38(5):774-778 doi: 10.3321/j.issn:1002-185X.2009.05.006

    ZHANG S Y,LIN X,CHEN J,et al. Effect of heat treatment on residual stress of laser stereoforming TC4[J]. Rare Metal Materials and Engineering,2009,38(5):774-778.) doi: 10.3321/j.issn:1002-185X.2009.05.006
    [53] TERNER M,BIAMINO S,EPICOCO P,et al. Electron beam melting of high niobium containing TiAl alloy:feasibility investigation[J]. Steel Research International,2012,83(10):943-949 doi: 10.1002/srin.v83.10
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  3660
  • HTML全文浏览量:  1609
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-25
  • 修回日期:  2017-12-23
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回