基于桥联模型预测层合板分层萌生载荷

顾嘉杰 黄争鸣

顾嘉杰, 黄争鸣. 基于桥联模型预测层合板分层萌生载荷[J]. 航空材料学报, 2019, 39(1): 96-101. doi: 10.11868/j.issn.1005-5053.2018.000055
引用本文: 顾嘉杰, 黄争鸣. 基于桥联模型预测层合板分层萌生载荷[J]. 航空材料学报, 2019, 39(1): 96-101. doi: 10.11868/j.issn.1005-5053.2018.000055
Jiajie GU, Zhengming HUANG. Assessing delamination initiation of laminates based on bridging model[J]. Journal of Aeronautical Materials, 2019, 39(1): 96-101. doi: 10.11868/j.issn.1005-5053.2018.000055
Citation: Jiajie GU, Zhengming HUANG. Assessing delamination initiation of laminates based on bridging model[J]. Journal of Aeronautical Materials, 2019, 39(1): 96-101. doi: 10.11868/j.issn.1005-5053.2018.000055

基于桥联模型预测层合板分层萌生载荷

doi: 10.11868/j.issn.1005-5053.2018.000055
基金项目: 国家自然科学基金项目(11472192,11272238)
详细信息
    通讯作者:

    黄争鸣(1957—),男,教授,主要研究方向为复合材料细观力学,(E-mail) huangzm@tongji.edu.cn

  • 中图分类号: TB332

Assessing delamination initiation of laminates based on bridging model

  • 摘要: 层合板本质上由基体树脂将单层板粘在一起,其分层萌生必然从基体树脂破坏开始。基于此,通过分析基体树脂的破坏来预测层合板的分层萌生载荷,通过有限元计算出轴向拉伸载荷下层合板的应力场,沿厚度方向平均来消除自由边缘处层间应力的奇异性,之后根据桥联模型计算纤维和基体树脂应力,并用Mohr判据来判断基体树脂是否破坏。预测了T800/914层合板[±θn]s的分层萌生载荷,与实验结果吻合良好;本工作的最大优点是只需组分材料的性能即可预测层合板的分层萌生载荷。

     

  • 图  1  层合板[±θ]s

    Figure  1.  Geometry of a [±θ]s laminate

    图  2  层合板X-Y平面的网格划分

    Figure  2.  Meshing of X-Y plane of a laminated plate

    图  3  层合板局部坐标和整体坐标示意图

    Figure  3.  Global coordinates and local coordinates

    图  4  由纯剪切和单轴拉伸实验近似的Mohr包络线

    Figure  4.  Mohr envelope approximated by pure shear and uniaxial tensile tests

    图  5  厚度上划分不同数目单元时T800/914层合板[±10]s在界面(+10/–10)z = t上层间应力σxz沿y方向的应力分布

    Figure  5.  Interlaminar stress σxz at interface (+10/–10) z = t in T800/914 [±10]s laminate versus y for different numbers of elements along thickness of each layer

    图  6  厚度上划分不同数目单元时层合板[±10]s在自由边y = 0处层间应力σxz沿z方向的应力分布

    Figure  6.  Interlaminar stress σxz at y = 0 in T800/914 [±10]s laminate versus z for different number of elements through thickness of each layer

    图  7  平均后层合板T800/914 [±10]s的层间应力σxz沿y方向的应力分布

    Figure  7.  Average interlaminar stress σxz in T800/914 [±10]s laminate versus y

    图  8  桥联模型得到层合板[±10]s的基体应力沿宽度方向的应力分布

    Figure  8.  Stresses of matrix determined by bridging model in T800/914 [±10]s versus y

    表  1  单层板的力学性能

    Table  1.   Mechanical properties of UD composites

    CompositeE11/GPaE22/GPaG12/GPaυ12X/MPaY/MPaS/MPa
    T800/914[11]159 8.44.10.33240050100
    IM7/914-C153.610.25.70.27288255145
    下载: 导出CSV

    表  2  组分材料IM7和914-C的力学性能[21]

    Table  2.   Original mechanical properties on IM7 fiber and 914-C matrix[21]

    MaterialE11/GPaE22/GPaν12G12/GPaν23σu, t/MPaσu, c/MPaσu, s/MPaV
    Fiber276190.2270.36518032000.55
    Matrix440.351.481 0.3575150700.45
    下载: 导出CSV

    表  3  T800/914层合板[±θn]s的预测值与实验值[11]对比

    Table  3.   Predicted and measured delamination initiation loads[11] for T800/914 angle-plied laminates

    n[±10n]s[±20n]s[±30n]s
    Experiment/
    MPa
    Prediction /
    MPa
    Deviation/%Experiment/
    MPa
    Prediction /
    MPa
    Deviation/%Experiment/
    MPa
    Prediction /
    MPa
    Deviation/%
    182697918.559970617.84064346.9
    27227483.64955276.530434613.8
    36556510.64184456.426930714.1
    45805942.43944134.823228221.5
    56195589.83543879.322726717.6
    下载: 导出CSV
  • [1] 关志东. 现代大型客机复合材料应用及技术发展[C]// 全国复合材料学术会议. 北京: [出版者不详], 2008.

    GUAN Z D. Modern large passenger aircraft composite materials application and technology development[C]// National Composites Academic Conference. Beijing: [s.n.], 2008.
    [2] 王雅娜,陈新文,龚愉. 复合材料0°/45°层间界面I型、II型和I/II混合型分层实验研究[J]. 航空材料学报,2018,38(6):83-88 doi: 10.11868/j.issn.1005-5053.2017.000202

    WANG Y N,CHEN X Y,GONG Y. Experimental Study on Delamination of Composite Laminates with 0°/45° Interface under Mode I, Mode II and Mixed-mode I/II Loading[J]. Journal of Aeronautical Materials,2018,38(6):83-88.) doi: 10.11868/j.issn.1005-5053.2017.000202
    [3] 谢宗蕻,蔡书杰,郭奇,等. 碳纤维增强复合材料层间断裂韧度[J]. 航空材料学报,2018,38(4):137-142 doi: 10.11868/j.issn.1005-5053.2016.000189

    XIE Z H,CAI S J, GUO Q,et al. Interfacial fracture toughness of carbon fiber reinforced composites[J]. Journal of Aeronautical Materials,2018,38(4):137-142.) doi: 10.11868/j.issn.1005-5053.2016.000189
    [4] 黄啸,黄颐,刘建中. 先进铝锂合金层板疲劳裂纹扩展分层行为[J]. 航空材料学报,2018,38(4):130-136 doi: 10.11868/j.issn.1005-5053.2018.000050

    HUANG X, HUANG Y,LIU J Z. Delamination behavior of an advanced Al-Li alloy laminate during fatigue crack growth[J]. Journal of Aeronautical Materials,2018,38(4):130-136.) doi: 10.11868/j.issn.1005-5053.2018.000050
    [5] PIPES R B,PAGANO N J. Interlaminar stresses in composite laminates under uniform axial extension[J]. Journal of Composite Materials,1970,34(4):234-245
    [6] WISNOM M R,KHAN B,HALLETT S R. Size effects in unnotched tensile strength of unidirectional and quasi-isotropic carbon/epoxy composites[J]. Composite Structures,2008,84(1):21-28 doi: 10.1016/j.compstruct.2007.06.002
    [7] KIM R Y,SONI S R. Experimental and analytical studies on the onset of delamination in laminated composites[J]. Journal of Composite Materials,1984,18(1):70-80 doi: 10.1177/002199838401800106
    [8] RAMTEKKAR G S,DESAI Y M. On free-edge effect and onset of delamination in FRPC laminates using mixed finite element model[J]. Journal of Reinforced Plastics & Composites,2008,28(3):317-341
    [9] SUN C T,ZHOU S G. Failure of quasi-isotropic composite laminates with free edges[J]. Journal of Reinforced Plastics & Composites,1988,7(7):515-557
    [10] BREWER J C,LAGACE P A. Quadratic stress criterion for initiation of delamination[J]. Journal of Composite Materials,1988,22(12):1141-1155 doi: 10.1177/002199838802201205
    [11] LORRIOT T,MARION G,HARRYR,et al. Onset of free-edge delamination in composite laminates under tensile loading[J]. Composites Part B:Engineering,2003,34(5):459-471 doi: 10.1016/S1359-8368(03)00016-7
    [12] LAGUNEGRAND L,LORRIOT T,HARRY R,et al. Initiation of free-edge delamination in composite laminates[J]. Composites Science & Technology,2006,37(10):103-136
    [13] WANG A S D. Fracture analysis of interlaminar cracking[M]//Composite Materials Series. [S.l]: Elsevier, 1989: 69-109.
    [14] MARTIN E,LEGUILLON D,CARRERE N. A twofold strength and toughness criterion for the onset of free-edge shear delamination in angle-ply laminates[J]. International Journal of Solids & Structures,2010,47(9):1297-1305
    [15] TURON A,DAVILA C G,CAMANHO P P,et al. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models[J]. Engineering Fracture Mechanics,2007,74(10):1665-1682 doi: 10.1016/j.engfracmech.2006.08.025
    [16] UGEN A, ZUBILLAGA L, TURON A, et al. Comparison of cohesive zone models used to predict delamination initiated from free-edges: Validation against experimental results[C]∥Eccm-16TH European Conference on Composite Materials.At Seville, Spain: [s.n.], 2014: 22-26.
    [17] MOHAMMADI B,SALIMI-MAJD D. Investigation of delamination and damage due to free edge effects in composite laminates using cohesive interface elements[J]. Engineering Solid Mechanics,2014,2(2):101-118 doi: 10.5267/j.esm.2014.2.001
    [18] VACHON P L,BRAILOVSKI V,TERRIAULT P. Modeling of delamination initiation and propagation in composite laminates under monotonie tensile loading using the progressive damage modeling technique: science and engineering of composite materials[J]. Science & Engineering of Composite Materials,2009,16(2):99-114
    [19] RAJUI S,CREWS Jr J H. Interlaminar stress singularities at a straight free edge in composite laminates[J]. Computers & Structures,1981,14(1/2):21-28
    [20] LIN Y. Role of matrix resin in delamination onset and growth in composite laminates[J]. Composites Science & Technology,1988,33(4):257-277
    [21] HUANG Z M,XIN L M. In situ strengths of matrix in a composite[J]. Chinese Journal of Theoretical Applied Mechanics,2017,33(1):1-12
    [22] DIAZ A D,CARON J F. Prediction of the onset of mode III delamination in carbon-epoxy laminates[J]. Composite Structures,2006,72(4):438-445 doi: 10.1016/j.compstruct.2005.01.014
    [23] HUANG Z M, ZHOU Y X. Strength of fibrous composites[M]. Hangzhou: Zhejiang University Press, 2011.
    [24] WANG Y,HUANG Z. A new approach to a bridging tensor[J]. Polymer Composites,2015,36(8):1417-1431 doi: 10.1002/pc.v36.8
    [25] 孙训方. 材料力学Ⅱ[M]. 北京: 高等教育出版社. 2009.
    [26] DIAZ A D,CARON J F. Interface plasticity and delamination onset prediction[J]. Mechanics of Materials,2006,38(7):648-663 doi: 10.1016/j.mechmat.2005.12.001
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  2728
  • HTML全文浏览量:  1495
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-16
  • 修回日期:  2018-06-20
  • 网络出版日期:  2018-10-30
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回