Fracture behavior of low cycle fatigue and dwell fatigue of Ti6242 titanium alloy under high load
-
摘要: Ti6242作为一种力学性能优异的近α型钛合金,与其他近α和α+β型钛合金类似,在接近室温时表现出保载疲劳的特征。本研究借鉴钛合金保载疲劳敏感性随测试载荷提升而上升的变化规律,设计高载荷的低周疲劳和保载疲劳力学性能测试,结合微观组织观察、力学性能表征和断口分析,系统分析微观组织和高载荷作用下低周疲劳和保载疲劳损伤行为,建立微观组织与力学性能的联系,总结不同载荷条件下的断口特征与规律,评估高载荷测试条件下Ti6242钛合金保载疲劳敏感性,结果证明通过提高载荷来表征Ti6242钛合金的保载疲劳性能具有可行性。Abstract: As one kind of near alpha titanium alloys with excellent mechanical properties, Ti6242 alloy always shows the" dwell fatigue”characteristic, which is similar to other near α or α+β titanium alloys, especially at near room temperature. In this study, the low cycle fatigue and dwell fatigue tests under high load were designed according to the law of dwell fatigue sensitivity rising with the increase of test load. Combining with microstructure observation, mechanical property characterization and failure fracture analysis, the relationship between the microstructure and fracture behavior under high load low cycle fatigue and dwell fatigue tests was analyzed systematically. By summarizing the characteristics of failure fracture under room temperature tensile, high load low cycle fatigue test and high load dwell fatigue test, also comparing the dwell fatigue sensitivity of the Ti6242 alloy in this study with other Ti6242 alloys and other titanium alloys under different loading conditions, it is proved that increasing the fatigue load is a feasible way to characterize the dwell fatigue sensitivity of Ti6242 alloy.
-
Key words:
- Titanium /
- dwell fatigue /
- high load /
- fracture analysis
-
图 4 Ti6242合金断口形貌 (a)室温拉伸宏观断口;(b)保载疲劳宏观断口;(c)室温拉伸微观断口;(d)保载疲劳微观断口
Figure 4. Fracture morphologies of Ti6242 alloy (a)macroscopic fracture of room temperature tensile specimen;(b)macroscopic fracture of dwell fatigue specimen;(c)microscopic fracture of room temperature tensile specimen;(d)microscopic fracture of dwell fatigue specimen
图 5 Ti6242合金高载荷条件下保载疲劳断口特征(931 MPa/室温/Kt = 1/R = 0/加载卸载各1 s,保载120 s) (a)韧窝断口区域;(b)白亮特征区域;(c)韧窝特征;(d)小平面特征
Figure 5. Fracture features of Ti6242 alloy of dwell fatigue specimens under high load(931 MPa/ room temperature/Kt = 1/R = 0/loading time 1 s and unloading time 1 s, load holding time 120 s) (a)dimple fracture area;(b)white bright area;(c)dimple characteristics;(d)small facet characteristics
图 6 Ti6242合金不同载荷条件的疲劳条带特征 (a)低周疲劳试样疲劳条带(869 MPa/室温/Kt = 1/R = 0/f = 0.5 Hz/三角波);(b)高载荷低周疲劳试样(931 MPa/室温/Kt = 1/R = 0/f = 0.5 Hz/三角波);(c)高载荷保载疲劳试样(931 MPa/室温/Kt = 1/R = 0/加载卸载各1 s,保载120 s)
Figure 6. Fatigue striation characteristics of Ti6242 alloy under different load conditions (a)low-cycle fatigue(869 MPa/room temperature/Kt = 1/R = 0/f = 0.5 Hz/triangle wave);(b)low-cycle fatigue(931 MPa/ room temperature/Kt = 1/R = 0/f = 0.5 Hz/triangle wave);(c)dwell fatigue(931 MPa/room temperature/Kt = 1/R = 0/loading time 1 s and unloading time 1 s,load holding time 120 s)
表 1 Ti6242钛合金不同取样位置室温拉伸力学性能(平均值)
Table 1. Room temperature tensile properties of Ti6242 alloy at different locations(average values)
Location Tensile strength/MPa Yield strength/MPa Elongation/% Reduction of area/% Near surface 971.0 ± 5.7 869.5 ± 14.8 16.6 ± 2.0 40.4 ± 2.3 Middle 980.0 ± 7.1 881.0 ± 12.7 18.0 ± 3.5 40.3 ± 1.0 Center 975.0 ± 7.1 881.0 ± 8.5 18.8 ± 0.4 38.5 ± 2.1 表 2 Ti6242钛合金高载荷低周疲劳和保载疲劳失效周期及保载疲劳敏感性
Table 2. Low-cycle fatigue (Nf, l) and dwell fatigue (Nf, d) of Ti6242 alloy under high load and dwell fatigue sensitivity
Location Load/MPa Nf, l/cycle Location Load/MPa Nf, d/cycle Nf, l/Nf, d Near surface 931 5116 Near surface 931 142 36.0 Middle 931 10663 Middle 931 424 25.1 Center 931 8631 Center 931 495 17.4 -
[1] 曹春晓. 航空用钛合金的发展概况[J]. 航空科学技术,2005(4):3-6 doi: 10.3969/j.issn.1007-5453.2005.04.001CAO C X. General development situation of titanium alloys for aviation[J]. Aeronautical Science and Technology,2005(4):3-6.) doi: 10.3969/j.issn.1007-5453.2005.04.001 [2] 王清江,刘建荣,杨锐. 高温钛合金的现状与前景[J]. 航空材料学报,2014,34(4):1-26 doi: 10.3969/j.issn.1001-4381.2014.04.001WANG Q J,LIU J R,YANG R. High temperature titanium alloys: status and perspective[J]. Journal of Aeronautical Materials,2014,34(4):1-26.) doi: 10.3969/j.issn.1001-4381.2014.04.001 [3] 毛小南,赵永庆,杨冠军. 国外航空发动机用钛合金的发展现状[J]. 稀有金属快报,2007,26(5):1-7 doi: 10.3969/j.issn.1674-3962.2007.05.001MAO X N,ZHAO Y Q,YANG G J. Development situation of the overseas titanium alloys used for aircraft engine[J]. Rare Metals Letters,2007,26(5):1-7.) doi: 10.3969/j.issn.1674-3962.2007.05.001 [4] BANERJEE D,WILLIAMS J C. Perspectives on titanium science and technology[J]. Acta Materialia,2013,6(13):844-879 [5] SPENCE S H, EVANS W J, COPE M. Dwell fatigue of Ti 6246 at near ambient temperatures[C]//International Conference on Fracture. Australia: [s. L.][s. n.], 1997: 1571-1578. [6] BACHE M R. A review of dwell sensitive fatigue in titanium alloys: the role of micro structure, texture and operating[J]. International Journal of Fatigue,2003,25(9/10/11):1079-1087 doi: 10.1016/S0142-1123(03)00145-2 [7] MCBAGONLURI F,AKPAN E,MERCER C,et al. An investigation of the effects of microstructure on dwell fatigue crack growth in Ti-6242[J]. Materials Science and Engineering: A,2005,405:111-134 doi: 10.1016/j.msea.2005.05.097 [8] ZHENG Z B,BALINT D S,DUNNE F P E. Dwell fatigue in two Ti alloys: an integrated crystal plasticity and discrete dislocation study[J]. Journal of the Mechanics and Physics of Solids,2016,96:411-427 doi: 10.1016/j.jmps.2016.08.008 [9] SINHA V, MILLS M J, WILLIAMS J C. Dwell-fatigue behavior of Ti-6Al-2Sn-4Zr-2Mo-0.1Si alloy[M]. Pennsylvania, US: John Wiley & Sons, Inc. , 2013: 193-207. [10] KIRANE K,GHOSH S. A cold dwell fatigue crack nucleation criterion for polycrystalline Ti-6242 using grain-level crystal plasticity FE Model[J]. International Journal of Fatigue,2008,30(12):2127-2139 doi: 10.1016/j.ijfatigue.2008.05.026 [11] WOODFIELD A P, GORMAN M D, CORDERMAN R R, et al. Effect of microstructure on dwell fatigue behavior of Ti-6242[C]//TMS Fall Meeting '98, Symposium on Fatigue Behavior of Titanium Alloys. Pennsylvania , US: TMS, 1999: 111-118. [12] TOUBAL L,BOCHER P,MOREAU A. Dwell-fatigue life dispersion of a near alpha titanium alloy[J]. International Journal of Fatigue,2009,31(3):601-605 doi: 10.1016/j.ijfatigue.2008.09.010 [13] YANG L N,LIU J R,TAN J,et al. Dwell and normal cyclic fatigue behaviours of Ti60 Alloy[J]. Journal of Materials Science & Technology,2014,30(7):706-709 [14] BACHE M R,COPE M,DAVIES H M,et al. Dwell sensitive fatigue in a alpha titanium alloy at ambient temperature[J]. International Journal of Fatigue,1997,19(93):83-88 doi: 10.1016/S0142-1123(97)00020-0 [15] SINHA V,MILLS M J,WILLIAMS J C. Understanding the contributions of normal-fatigue and static loading to the dwell fatigue in a near-alpha titanium alloy[J]. Metallurgical & Materials Transactions A,2004,35(10):3141-3148 [16] QIU J,MA Y,LEI J,et al. A comparative study on dwell fatigue of Ti-6Al-2Sn-4Zr-xMo(x=2 to 6) alloys on a microstructure-normalized basis[J]. Metallurgical & Materials Transactions A,2014,45(13):6075-6087 [17] BRANDES M C,MILLS M J,WILLIAMS J C. The influence of slip character on the creep and fatigue fracture of an α Ti-AI alloy[J]. Metallurgical & Materials Transactions A,2010,41(13):3463-3472 [18] 杨丽娜,刘建荣,陈志勇,等. 加载波形对Ti60合金疲劳损伤行为的影响[J]. 中国有色金属学报,2010,20(增刊 1):487-490YANG L N,LIU J R,CHEN Z Y,et al. Effect of loading waveform on fatigue damage behavior of Ti-60 alloy[J]. The Chinese Journal of Nonferrous Metals,2010,20(Suppl 1):487-490.) -