Effect of composition on microstructure and mechanical properties of TA15 titanium alloy
-
摘要: 为分析TA15钛合金成分的微小变化与显微组织和力学性能之间的响应关系,利用电子万能拉力试验机和分离式霍普金森压杆(SHPB)装置测量了4种不同成分TA15钛合金的室温准静态拉伸性能和动态力学性能,结果表明:Zr元素对室温拉伸强度性能影响微弱,随着主合金元素Al、V和Mo元素含量的增加,初生α相含量减小,次生α相片层较细,合金的强度提高,塑性下降;在临界应变率范围内,合金成分的微小变化对动态力学性能的影响微弱,提高主合金元素Al、Zr、V和Mo元素含量,有利于提高合金的临界应变率,且在此临界应变率下具有优异的动态力学性能;对于空冷条件下获得的等轴组织TA15钛合金,初生α相体积分数越小、次生α相片层较细时有利于室温抗拉强度、临界应变率和动态力学性能的提高。Abstract: To analyze the relationship between composition, microstructure and mechanical properties of TA15 titanium alloys, the quasi-static tensile properties and dynamic properties at room temperature of four kinds of TA15 titanium alloys were studied by the electronic universal tensile testing machine and split hopkinson pressure bar (SHPB). The results reveal that the Zr content has little effect on the tensile strength at room temperature, moreover, with the increase of content of main alloy elements Al, V and Mo, the content of primary α phase decreases and the lamella width of secondary α phase is thinner which provide higher strength and lower plasticity. Slight changes in alloy composition have little effect on dynamic mechanical properties within the critical strain rate range. Increasing the content of main alloy elements Al, Zr, V and Mo is beneficial to improve the critical strain rate, at which the alloy has excellent dynamic mechanical properties. For equiaxed TA15 titanium alloys obtained under air cooling condition, the smaller volume fraction of primary α phase and thinner lamella of secondary α phase can improve the tensile strength, critical strain rate and dynamic mechanical properties at room temperature.
-
Key words:
- TA15 titanium alloy /
- alloy composition /
- microstructure /
- mechanical properties
-
表 1 TA15钛合金成分(质量分数/%)
Table 1. Compositions of TA15 titanium alloys(mass fraction/%)
Alloy Al Zr Mo V O Ti 1# 6.85 2.04 1.20 1.04 0.11 Bal. 2# 6.88 1.66 1.21 1.04 0.13 Bal. 3# 6.87 1.67 0.81 1.04 0.13 Bal. 4# 6.94 1.65 1.23 1.51 0.13 Bal. 表 2 4 种 TA15 合金的微观组织参数
Table 2. Microstructure parameters of 4 kinds of TA15 alloys
Alloy Content of primary α phase /% Lamella width of secondary α phase/μm 1# 67.82 0.683 2# 69.63 0.695 3# 76.44 0.803 4# 61.41 0.585 表 3 4 种 TA15 合金热处理后的拉伸性能
Table 3. Tensile properties of 4 kinds of TA15 alloys after heat treatment
Alloy Rm/MPa A/% Rm/MPa (calculated by
equivalent formula)1# 933 18.1 921 2# 935 15.9 940 3# 927 17.6 920 4# 952 14.9 959 表 4 不同成分TA15钛合金在(2700 ± 100) s–1、(3000 ± 100) s–1及临界应变率下的σ、ε 及E
Table 4. Dynamic strength, dynamic strain and absorbed energy of TA15 titanium alloys with different compositions at (2700 ± 100) s–1、(3000 ± 100) s–1 and critical strain rate
Alloy (2700 ± 100) s–1 (3000 ± 100) s–1 Critical strain rate σ/MPa ε E/(J·cm–3) σ/MPa ε E/(J·cm–3) ${\dot \varepsilon _{\rm c}}$ σ/MPa ε E/(J·cm–3) 1# 1490 0.21 309 1559 0.24 382 3350 1538 0.28 424 2# 1515 0.21 316 1511 0.24 367 3320 1575 0.27 423 3# 1524 0.21 318 1500 0.24 363 3230 1506 0.26 393 4# 1506 0.21 311 1500 0.24 357 3400 1604 0.28 450 表 5 不同成分TA15钛合金的室温准静态拉伸性能和临界动态力学性能对比
Table 5. Comparison of quasi-static tensile properties and critical dynamic properties for different compositions of TA15 titanium alloys
Alloy Composition characteristics Content of primary α phase Lamella width of secondary α phase Strength Plasticity Critical
strain rateE/(J·cm–3) ε σ/MPa 1# and 2# 1#:more Zr,
Less OSlight
LessSlight
LowerSlight
LowerHigher Slight
HigherSlight
HigherHigher Lower 2# and 3# 2#:more Mo Less Lower Higher Lower Higher Higher Higher Higher 2# and 4# 4#:more
V and AlLess Lower Higher Lower Higher Higher Higher Higher 3# and 4# 4#:more Al,
Mo and VLess Lower Higher Lower Higher Higher Higher Higher -
[1] 朱文海. 导弹弹体结构材料的分析研究[J]. 系统工程与电子技术,1992,14(11):73-81 doi: 10.3321/j.issn:1001-506X.1992.07.012ZHU W H. A research of structural material for missile body[J]. Systems Engineering and Electronics,1992,14(11):73-81.) doi: 10.3321/j.issn:1001-506X.1992.07.012 [2] 赵融,廖金华. 先进材料与工艺在机载导弹上的研究与应用[J]. 航空制造技术,2016,59(23/24):120-125ZHAO R,LIAO J H. Research of advanced materials and technologies on airborne missile[J]. Aeronautical Manufacturing Technology,2016,59(23/24):120-125.) [3] ZHU J C,WANG D Y,LIU Y,et al. Influence of deformation parameters on microstructure and mechanical properties of TA15 titanium alloy[J]. Transactions of Nonferrous Metals Society of China,2007,17(Suppl 1):490-494 [4] 李兴无,沙爱学,张旺峰,等. TA15钛合金及其在飞机结构中的应用前景[J]. 钛工业进展,2003,20(4/5):90-94LI X W,SHA A X,ZHANG W F,et al. TA15 titanium and its applying prospects on air frame[J]. Titanium Industry Progress,2003,20(4/5):90-94.) [5] SUN Z C,YANG H,HAN G J. A numerical model based on internal-state-variable method for the microstructure evolution during hot-working process of TA15 titanium alloy[J]. Materials Science and Engineering:A,2010,527(15):3464-3471 doi: 10.1016/j.msea.2010.02.009 [6] WANG G C,FU M W,DONG H B,et al. Super plasticity deformation of Ti-6Al-2Zr-1Mo-1V induced by the cyclic change of strain-rate and MaxmSPD[J]. Journal of Alloys and Compounds,2010,491(1/2):213-217 doi: 10.1016/j.jallcom.2009.11.046 [7] SUN Z C,YANG H. Microstructure and mechanical properties of TA15 titanium alloy under multi-step local forming[J]. Materials Science and Engineering:A,2009,523(1/2):184-192 doi: 10.1016/j.msea.2009.05.058 [8] 郝芳,毛友川,赖运金,等. 应变速率对TA15钛合金室温性能的影响[J]. 特种铸造及有色合金,2015,35(7):700-702HAO F,MAO Y C,LAI Y J,et al. Effects of strain rate on the room temperature properties of TA15 titanium alloy[J]. Special Casting and Nonferrous Alloys,2015,35(7):700-702.) [9] CHIOU S T,TSAI H L,LEE W S. Effects of strain rate and temperature on the deformation and fracture behavior of titanium alloy[J]. Materials Transactions,2007,48(9):2525 doi: 10.2320/matertrans.MRA2007607 [10] PARK H R, WITTMAN C L. Metallurgical application of shock waves and high strain rate phenomena[M]. New York: Marcel Dekker Inc, 1986: 749. [11] 尤振平.钛合金的显微组织与动态性能的关系研究[D]. 北京: 北京有色金属研究总院, 2011.YOU Z P. Study on the relationship between microstructure and dynamical property of titanium alloy[D]. Beijing: General Research Institute for Nonferrous Metals, 2011. [12] 杨扬,程信林. 绝热剪切的研究现状及发展趋势[J]. 中国有色金属学报,2002,12(3):401-408 doi: 10.3321/j.issn:1004-0609.2002.03.001YANG Y,CHENG X L. Current status and trends in researches on adiabatic shearing[J]. The Chinese Journal of Nonferrous Metals,2002,12(3):401-408.) doi: 10.3321/j.issn:1004-0609.2002.03.001 [13] 李淼泉,李晓丽,龙丽,等. TA15合金的热变形行为及加工图[J]. 稀有金属材料与工程,2006,35(9):1354-1358 doi: 10.3321/j.issn:1002-185X.2006.09.003LI M Q,LI X L,LONG L,et al. Deformation behavior and processing map of high temperature of TA15 Alloy[J]. Rare Metal Materials and Engineering,2006,35(9):1354-1358.) doi: 10.3321/j.issn:1002-185X.2006.09.003 [14] 张捷频,闵新华. 杂质元素N、O、Fe对TA15钛合金性能和组织的影响[J]. 材料开发与应用,2013,28(2):83-86ZHANG J P,MIN X H. Effects of elements N, O and Fe on microstructure and property of TA15 titanium alloy[J]. Development and Application of Materials,2013,28(2):83-86.) [15] 王礼立, 余同希, 李永池. 冲击动力学进展[M]. 合肥: 中国科学技术大学出版社, 1992: 3-33.WANG L L, YU T X, LI Y C. Progress in impact dynamics[M]. Hefei: Press of University of Science and Technology of China, 1992: 3-33. [16] PU Z J,WU K H,SHI J. Development of constitutive relationships for the hot deformation of boron micro alloying TiAl-Cr-V alloys[J]. Materials Science and Engineering:A,1995,192:780-787 [17] 彭娜. 高温钛合金中α相的临界尺寸效应研究[D]. 沈阳: 沈阳大学, 2007: 3-9.PENG N. The research on the effect of α2 phase critical size in high-temperature titanium alloy[D]. Shenyang: Shenyang University, 2007: 3-9. [18] 刘清华,惠松骁,叶文君,等. 合金元素对TC4钛合金动态力学性能的影响[J]. 稀有金属材料与工程,2013,42(7):1464-1468 doi: 10.3969/j.issn.1002-185X.2013.07.030LIU Q H,HUI S X,YE W J,et al. Effect of the content of alloying elements on dynamic mechanical properties of TC4 alloy[J]. Rare Metal Materials and Engineering,2013,42(7):1464-1468.) doi: 10.3969/j.issn.1002-185X.2013.07.030 [19] 魏寿庸,石卫民,郭佳林,等. β元素Mo对600 ℃高温钛合金组织与性能的影响[J]. 中国钛业:工艺技术研究,2014,1(1):14-18WEI S Y,SHI W M,GUO J L,et al. Effects of β stabilizing element of Mo on the microstructure and property of high temperature titanium alloy at 600 ℃[J]. China Titanium Industry: Technology Research,2014,1(1):14-18.) -