基于同步辐射技术的WE54镁合金原位时效研究

曾嘉 周碧晋

曾嘉, 周碧晋. 基于同步辐射技术的WE54镁合金原位时效研究[J]. 航空材料学报, 2019, 39(1): 62-69. doi: 10.11868/j.issn.1005-5053.2018.000101
引用本文: 曾嘉, 周碧晋. 基于同步辐射技术的WE54镁合金原位时效研究[J]. 航空材料学报, 2019, 39(1): 62-69. doi: 10.11868/j.issn.1005-5053.2018.000101
Jia ZENG, Bijin ZHOU. In situ study on aging behavior of WE54 alloy using synchrotron radiation[J]. Journal of Aeronautical Materials, 2019, 39(1): 62-69. doi: 10.11868/j.issn.1005-5053.2018.000101
Citation: Jia ZENG, Bijin ZHOU. In situ study on aging behavior of WE54 alloy using synchrotron radiation[J]. Journal of Aeronautical Materials, 2019, 39(1): 62-69. doi: 10.11868/j.issn.1005-5053.2018.000101

基于同步辐射技术的WE54镁合金原位时效研究

doi: 10.11868/j.issn.1005-5053.2018.000101
详细信息
    通讯作者:

    周碧晋(1991—),男,博士研究生,主要从事先进镁合金设计和表征,(E-mail)bjzhou@sjtu.edu.cn

  • 中图分类号: TG146.2

In situ study on aging behavior of WE54 alloy using synchrotron radiation

  • 摘要: 利用原位同步辐射技术对WE54镁合金时效过程进行研究。通过对比固溶态(T4)和固溶后冷轧预变形(T4-D)两组合金,揭示WE系列合金在300 ℃时效温度下析出相演变过程以及预变形对时效析出动力学的影响。原位时效研究表明:T4-D合金的强化相β1(Mg3(Nd, Y))在时效开始3 min后快速形核;时效9 min后β1开始向β(Mg14Nd2Y)转变,时效36 min后此转变结束,此后β占主导地位;对于T4合金的时效析出过程,β1在时效开始6 min后形核;时效18 min后β1开始向β转变;时效78 min后此转变结束。同步辐射衍射结合透射电子显微镜(TEM)结果分析发现:通过轧制预变形可以加速合金的时效进程并促进形成网状分布的时效析出相,这种分布有利于合金获得良好的时效强化效果。

     

  • 图  1  原位时效实验示意图

    Figure  1.  Schematic diagram of in situ aging experiment

    图  2  冷轧预变形对合金组织的影响 (a)T4金相组织;(b)T4-D金相组织;(c)T4合金原位时效前同步辐射二维衍射图;(d)T4-D合金原位时效前同步辐射二维衍射图;(e)积分得到的一维衍射谱,其中的局部放大图表示轧制变形使材料晶面间距发生变化,导致${{(10\bar 10)}}$衍射峰位置偏移

    Figure  2.  Effect of cold rolling pre-deformation on microstructure of WE54 alloys (a)optical micrographs under T4 condition;(b)optical micrographs under T4-D condition;(c)2D diffraction patterns of T4 alloy before aging;(d)2D diffraction patterns of T4-D alloy before aging;(e)corresponding 1D diffraction profiles of two alloys, and insert in(e)shows the change of Mg ${{(10\bar 10)}}$ diffraction peak after rolling, which indicates that lattice constant of Mg changes due to cold rolling

    图  3  300 ℃ 时效条件下两种WE54合金的时效硬化曲线

    Figure  3.  Hardening curves of T4 and T4-D alloys aging at 300 ℃

    图  4  T4合金β1和β同步辐射衍射信息 (a)时效12 min二维衍射图;(b)时效90 min后二维衍射图;(c)显示Mg、β1、β相的一维衍射谱

    Figure  4.  Synchrotron radiation diffraction information for β1 and β in T4 alloy (a)2D diffraction patterns aged for 12 min;(b)2D diffraction patterns aged for 90 min;(c)1D diffraction profiles showing diffraction peaks of Mg, β1, and β phase

    图  5  时效过程的衍射峰演变图 (a)T4合金;(b)T4-D合金

    Figure  5.  Diffraction peak evolution during in situ aging process (a)T4 alloy;(b)T4-D alloy

    图  6  300 ℃时效时T4和T4-D合金β1和β衍射峰面积 (a)T4合金;(b)T4-D合金

    Figure  6.  Diffraction peak areas of β1 and β phase in T4 and T4D alloys aged at 300 ℃ (a)T4 alloy;(b)T4-D alloy

    图  7  300 ℃时效40 min后的TEM照片 (a)T4合金;(b)T4-D合金(所拍摄TEM明场像的入射电子束与[0001]Mg平行)

    Figure  7.  TEM images of two alloys aged at 300 °C for 40 min (a)T4 alloy;(b)T4-D alloy(TEM bright field image with beam parallelled to [0001]Mg direction)

    表  1  WE54合金成分(质量分数/%)

    Table  1.   Composition of WE54(mass fraction/%)

    YNdZrGdCuNiFeMg
    4.951.910.471.630.0010.0020.002Bal.
    下载: 导出CSV

    表  2  β1在[111]和β在[333]方向上的尺寸估计值(根据衍射峰半高宽估计)

    Table  2.   Estimated dimension of β1 along [111] crystal direction and estimated dimension of β along [333] crystal direction

    AlloyFWHM /
    10–3 rad
    $D_{\text{β}_1}$/ nmFWHM /
    10–3 rad
    Dβ / nm
    T42.1684352.138441
    T4-D2.8583302.687351
    下载: 导出CSV
  • [1] 曾小勤,史枭颖. 稀土镁合金强韧性设计与开发[J]. 航空材料学报,2017,37(1):18-25

    ZENG X Q,SHI X Y. Strengthening and toughening design and development of Mg-rare earth alloys[J]. Journal of Aeronautical Materials,2017,37(1):18-25.)
    [2] AGNEW S R,NIE J F. Preface to the viewpoint set on: the current state of magnesium alloy science and technology[J]. Scripta Materialia,2010,63(7):671-673 doi: 10.1016/j.scriptamat.2010.06.029
    [3] MIAO J S,SUN W H,KLARNER A D,et al. Interphase boundary segregation of silver and enhanced precipitation of Mg17Al12 phase in a Mg-Al-Sn-Ag alloy[J]. Scripta Materialia,2018,154:192-196 doi: 10.1016/j.scriptamat.2018.05.047
    [4] 李扬欣,曾小勤. 高强塑积镁稀土合金的研究进展[J]. 航空材料学报,2018,38(4):1-9

    LI Y X,ZENG X Q. A review on Mg-RE alloys with high product of strength and elongation[J]. Journal of Aeronautical Materials,2018,38(4):1-9.)
    [5] SANATY-ZADEH A,LUO A A,STONE D S. Comprehensive study of phase transformation in age-hardening of Mg-3Nd-0.2Zn by means of scanning transmission electron microscopy[J]. Acta Materialia,2015,94:294-306 doi: 10.1016/j.actamat.2015.05.001
    [6] XU C,NAKATA T,QIAO X G,et al. Ageing behavior of extruded Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr(wt.%)alloy containing LPSO phase and γ′ precipitates[J]. Scientific Reports,2017,7:43391 doi: 10.1038/srep43391
    [7] HE S M,ZENG X Q,PENG L M,et al. Microstructure and strengthening mechanism of high strength Mg-10Gd-2Y-0.5Zr alloy[J]. Journal of Alloys and Compounds,2007,427(1):316-323
    [8] HE S M,ZENG X Q,PENG L M,et al. Precipitation in a Mg-10Gd-3Y-0.4Zr(wt.%)alloy during isothermal ageing at 250 ℃[J]. Journal of Alloys and Compounds,2006,421(1):309-313
    [9] NIE J F. Precipitation and hardening in magnesium alloys[J]. Metallurgical and Materials Transactions A,2012,43(11):3891-3939 doi: 10.1007/s11661-012-1217-2
    [10] ZHU Y M,LIU H,XU Z,et al. Linear-chain configuration of precipitates in Mg-Nd alloys[J]. Acta Materialia,2015,83:239-247 doi: 10.1016/j.actamat.2014.09.037
    [11] SOLOMON E L S,ARAULLO-PETERS V,ALLISON J E,et al. Early precipitate morphologies in Mg-Nd-(Zr)alloys[J]. Scripta Materialia,2017,128:14-17 doi: 10.1016/j.scriptamat.2016.09.015
    [12] YU Z J,HUANG Y D,QIU X,et al. Fabrication of a high strength Mg-11Gd-4.5Y-1Nd-1.5Zn-0.5Zr(wt.%)alloy by thermo-mechanical treatments[J]. Materials Science and Engineering: A,2015,622:121-130 doi: 10.1016/j.msea.2014.10.077
    [13] JAYARAJ J,MENDIS C L,OHKUBO T,et al. Enhanced precipitation hardening of Mg-Ca alloy by Al addition[J]. Scripta Materialia,2010,63(8):831-834 doi: 10.1016/j.scriptamat.2010.06.028
    [14] 蒋斌,刘文君,董含武,等. 高塑性铸态镁合金研究进展[J]. 航空材料学报,2018,38(4):10-25

    JIANG B,LIU W J,DONG H W,et al. Research progress of as-cast magnesium alloys with high plasticity[J]. Journal of Aeronautical Materials,2018,38(4):10-25.)
    [15] HILDITCH T, NIE J F, MUDDLE B C. The effect of cold work on precipitation in alloy WE54 [C]// Proceedings of Magnesium Alloys and Their Applications. Frankfurt: Viley-VCH, 1998: 339-344.
    [16] MENDIS C L,OH-ISHI K,KAWAMURA Y,et al. Precipitation-hardenable Mg-2.4Zn-0.1Ag-0.1Ca-0.16Zr(at.%)wrought magnesium alloy[J]. Acta Materialia,2009,57(3):749-760 doi: 10.1016/j.actamat.2008.10.033
    [17] ZHU Y M,MORTON A J,NIE J F. Improvement in the age-hardening response of Mg-Y-Zn alloys by Ag additions[J]. Scripta Materialia,2008,58(7):525-528 doi: 10.1016/j.scriptamat.2007.11.003
    [18] YAMADA K,HOSHIKAWA H,MAKI S,et al. Enhanced age-hardening and formation of plate precipitates in Mg-Gd-Ag alloys[J]. Scripta Materialia,2009,61(6):636-639 doi: 10.1016/j.scriptamat.2009.05.044
    [19] SHI G L,ZHANG D F,ZHANG H J,et al. Influence of pre-deformation on age-hardening response and mechanical properties of extruded Mg–6%Zn–1%Mn alloy[J]. Transactions of Nonferrous Metals Society of China,2013,23(3):586-592 doi: 10.1016/S1003-6326(13)62503-0
    [20] ZHOU B J,WANG L Y,CHEN B,et al. Study of age hardening in a Mg-2.2wt%Nd alloy by in situ synchrotron X-ray diffraction and mechanical tests[J]. Materials Science and Engineering: A,2017,708:319-328 doi: 10.1016/j.msea.2017.10.011
    [21] WANG L Y,LI M M,ALMER J,et al. Microstructural characterization of polycrystalline materials by synchrotron X-rays[J]. Frontiers of Materials Science,2013,7(2):156-159 doi: 10.1007/s11706-013-0201-0
    [22] BÉNÉTEAU A,AEBY-GAUTIER E,GEANDIER G,et al. Tempering of a martensitic stainless steel: investigation by in situ synchrotron X-ray diffraction[J]. Acta Materialia,2014,81:30-40 doi: 10.1016/j.actamat.2014.07.050
    [23] COLLINS D M,YAN L,MARQUIS E A,et al. Lattice misfit during ageing of a polycrystalline nickel-base superalloy[J]. Acta Materialia,2013,61(20):7791-7804 doi: 10.1016/j.actamat.2013.09.018
    [24] YANG T Y,WEN W,YIN G Z,et al. Introduction of the X-ray diffraction beamline of SSRF[J]. Journal of Nuclear Science and Technology,2015,26(2):1-5
    [25] ZHANG X,LI M,PARK J S,et al. In situ high-energy X-ray diffraction study of tensile deformation of neutron-irradiated polycrystalline Fe-9%Cr alloy[J]. Acta Materialia,2017,126:67-76 doi: 10.1016/j.actamat.2016.12.038
    [26] ZHOU B J,WANG L Y,ZHU G M,et al. Understanding the strengthening effect of β1 precipitates in Mg-Nd using in situ synchrotron X-ray diffraction[J]. JOM,2018,70(10):2315-2320 doi: 10.1007/s11837-018-2972-3
    [27] NIE J F,MUDDLE B C. Characterization of strengthening precipitate phases in a Mg-Y-Nd alloy[J]. Acta Materialia,2000,48(8):1691-1703 doi: 10.1016/S1359-6454(00)00013-6
    [28] PATTERSON A L. The Scherrer formula for X-ray particle size determination[J]. Physics Review,1939,56(10):978-982 doi: 10.1103/PhysRev.56.978
    [29] LENTZ M,KLAUS M,WAGNER M,et al. Effect of age hardening on the deformation behavior of an Mg-Y-Nd alloy: in-situ X-ray diffraction and crystal plasticity modeling[J]. Materials Science and Engineering: A,2015,628:396-409 doi: 10.1016/j.msea.2015.01.069
    [30] SAITO K,HIRAGA K. The structures of precipitates in an Mg-0.5at.%Nd age-hardened alloy studied by HAADF-STEM technique[J]. Materials Transactions,2011,52(10):1860-1867 doi: 10.2320/matertrans.M2011163
    [31] LIU H,GAO Y,ZHU Y M,et al. A simulation study of β1 precipitation on dislocations in an Mg-rare earth alloy[J]. Acta Materialia,2014,77:133-150 doi: 10.1016/j.actamat.2014.04.054
    [32] PIKE T J,NOBLE B. The formation and structure of precipitates in a dilute magnesium-neodymium alloy[J]. Journal of the Less Common Metals,1973,30(1):63-74 doi: 10.1016/0022-5088(73)90007-6
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  3313
  • HTML全文浏览量:  1441
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-17
  • 修回日期:  2018-10-19
  • 网络出版日期:  2019-01-21
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回