TB17钛合金高温压缩变形行为

朱鸿昌 罗军明 朱知寿

朱鸿昌, 罗军明, 朱知寿. TB17钛合金高温压缩变形行为[J]. 航空材料学报, 2019, 39(3): 44-52. doi: 10.11868/j.issn.1005-5053.2018.000103
引用本文: 朱鸿昌, 罗军明, 朱知寿. TB17钛合金高温压缩变形行为[J]. 航空材料学报, 2019, 39(3): 44-52. doi: 10.11868/j.issn.1005-5053.2018.000103
Hongchang ZHU, Junming LUO, Zhishou ZHU. High temperature compression deformation behavior of TB17 titanium alloy[J]. Journal of Aeronautical Materials, 2019, 39(3): 44-52. doi: 10.11868/j.issn.1005-5053.2018.000103
Citation: Hongchang ZHU, Junming LUO, Zhishou ZHU. High temperature compression deformation behavior of TB17 titanium alloy[J]. Journal of Aeronautical Materials, 2019, 39(3): 44-52. doi: 10.11868/j.issn.1005-5053.2018.000103

TB17钛合金高温压缩变形行为

doi: 10.11868/j.issn.1005-5053.2018.000103
基金项目: 总装预研加强项目(51312JQ01);国家自然科学基金项目(5176401)
详细信息
    通讯作者:

    朱知寿(1966—),男,博士,研究员,主要从事航空钛合金及应用技术研究,(E-mail)zhuzzs@126.com

  • 中图分类号: TG146

High temperature compression deformation behavior of TB17 titanium alloy

  • 摘要: 通过Gleeble 3800热模拟试验机对TB17钛合金在变形温度860~980 ℃、应变速率为0.001~1 s–1、最大变形量为70%下高温变形行为进行研究。通过材料参数与真应变之间的关系,利用Arrhenious本构方程关系式和Z参数建立流变应力和变形温度、应变速率和真应变三者之间的本构关系,并对组织进行分析。结果表明:TB17钛合金在应变速率为0.001~0.01 s–1、变形温度为890~980 ℃下更容易发生连续动态再结晶,而在应变速率为0.1~1 s–1下主要发生不连续动态再结晶;误差分析结果显示计算值与实测值平均相对误差为6%,说明建立的本构关系模型具有较高的准确度。

     

  • 图  1  TB17钛合金原始组织

    Figure  1.  Original microstructure of TB17 titanium alloy

    图  2  TB17钛合金不同温度下应力-应变曲线

    Figure  2.  Stress-strain curves of TB17 titanium alloy at different temperatures (a)860 ℃;(b)890 ℃;(c)920 ℃;(d)950 ℃;(e)980 ℃

    图  3  TB17钛合金峰值应力、变形温度和应变速率的关系

    Figure  3.  Relationship between peak stress,deformation temperature and strain rate of TB17 titanium alloy

    图  4  TB17钛合金在应变速率0.001 s–1、真应变0.69和不同温度下的热压缩显微组织

    Figure  4.  Microstructures of TB17 titanium alloy compressed at strain rate of 0.001 s–1,true strain of 0.69 and different temperatures (a)860 ℃;(b)890 ℃;(c)920 ℃;(d)950 ℃;(e)980 ℃

    图  5  TB17钛合金峰值应力与应变速率的关系

    Figure  5.  Relationship between peak stress and strain rate of TB17 titanium alloy

    图  6  TB17钛合金在950 ℃、应变1.2和不同应变速率下的热压缩显微组织

    Figure  6.  Microstructures of TB17 titanium alloy compressed at 950 ℃,strain of 1.2 and different strain rates (a)0.001 s–1;(b)0.01 s–1;(c)0.1 s–1;(d)1 s–1

    图  7  TB17钛合金在890 ℃、应变速率为0.001 s–1和不同应变下的热压缩显微组织

    Figure  7.  Microstructures of TB17 titanium alloy compressed at temperature of 890 ℃, strain rate of 0.001 s–1 and different strains (a)0;(b)0.22;(c)0.69;(d)1.2

    图  8  TB17钛合金在应变为0.4下流变应力与热变形参数的关系 (a)ln[sinh(ασ)]-ln $ \dot \varepsilon $曲线;(b)ln[sinh(ασ)]–1/T曲线

    Figure  8.  Relationship of rheological stress and thermal deformation parameters of TB17 titanium alloy at strain of 0.4(a)ln[sinh(ασ)]-ln $ \dot \varepsilon $ curve;(b)ln[sinh(ασ)]–1/T curve

    图  9  TB17钛合金ln Z - ln[sinh(ασ)]关系图

    Figure  9.  Relationship of ln Z - ln[sinh(ασ)] of TB17 titanium alloy

    图  10  应变对TB17钛合金参数的影响

    Figure  10.  Effect of strain on TB17 titanium alloy parameters (a)α;(b)n;(c)Q;(d)ln A

    图  11  TB17钛合金流变应力计算值(点)与实测值(线)对比

    Figure  11.  Comparison of calculation value and measured value of rheological stress of TB17 titanium alloy (a)860 ℃;(b)890 ℃;(c)920 ℃;(d)950 ℃;(e)980 ℃

    表  1  TB17钛合金参数和真应变之间的关系式及相关系数

    Table  1.   Relationship between parameters of TB17 titanium alloy and true strain and correlation coefficient

    Parameter Equation R2
    α 0.01263 – 0.00899ε + 0.03734ε2 – 0.04319ε3 + 0.01189ε4 0.99695
    n 3.46397 – 1.86082ε + 3.19793ε2 – 2.44431ε3 + 1.41977ε4 0.96291
    Q 293.43723 – 618.22018ε + 2081.01011ε2 – 3264.34651ε3 + 1893.3853ε4 0.98703
    ln A 25.44198 – 62.26263ε + 212.81252ε2 – 335.32472ε3 + 194.49804ε4 0.95972
    下载: 导出CSV
  • [1] 朱知寿. 我国航空用钛合金技术研究现状及发展[J]. 航空材料学报,2014,34(4):44-50.

    ZHU Z S. Recent research and development of titanium alloys for aviation application in china[J]. Journal of Aeronautical Materials,2014,34(4):44-50.)
    [2] 曹春晓. 钛合金在大型运输机上的应用[J]. 稀有金属快报,2006,25(1):17-21. doi: 10.3969/j.issn.1674-3962.2006.01.004

    CAO C X. Application of titanium alloys on lager transporter[J]. Rare Metals Letters,2006,25(1):17-21.) doi: 10.3969/j.issn.1674-3962.2006.01.004
    [3] 商国强,朱知寿,常辉,等. 超高强度钛合金研究进展[J]. 稀有金属,2011(2):286-291. doi: 10.3969/j.issn.0258-7076.2011.02.024

    SHANG G Q,ZHU Z S,CHANG H,et al. Development of ultra-high strength titanium alloy[J]. Chinese Journal of Rare Metals,2011(2):286-291.) doi: 10.3969/j.issn.0258-7076.2011.02.024
    [4] 金和喜,魏克湘,李建明,等. 航空用钛合金研究进展[J]. 中国有色金属学报,2015,25(2):280-292.

    JIN H X,WEI K X,LI J M,et al. Research development of titanium alloy in aerospace industry[J]. The Chinese Journal of Nonferrous Metals,2015,25(2):280-292.)
    [5] FAN J K,KOU H C,LAI M J,et al. Characterization of hot deformation behavior of a new near beta titanium alloy: Ti-7333[J]. Materials & Design,2013,49:945-952.
    [6] HUA K,XUE X,KOU H,et al. Characterization of hot deformation microstructure of a near beta titanium alloy Ti-5553[J]. Journal of Alloys & Compounds,2014,615:531-537.
    [7] ZHU Y,ZENG W ,FENG F,et al. Characterization of hot deformation behavior of as-cast TC21 titanium alloy using processing map[J]. Materials Science & Engineering:A,2011,528(3):1757-1763.
    [8] LIU S F,LI M Q,LUO J,et al. Deformation behavior in the isothermal compression of Ti-5Al-5Mo-5V-1Cr-1Fe alloy[J]. Materials Science & Engineering:A,2014,589(1):15-22.
    [9] 东赟鹏,于秋颖,方爽,等. TA7钛合金高温流变行为研究[J]. 航空材料学报,2015,35(1):13-19.

    DONG Y P,YU Q Y,FANG S,et al. Plastic deformation behavior of TA7 titanium alloy[J]. Journal of Aeronautical Materials,2015,35(1):13-19.)
    [10] 袁武华,卢政,齐占福,等. TA15钛合金热变形本构方程及热加工图[J]. 热加工工艺,2017(17):33-37.

    YUAN W H,LU Z,QI Z F,et al. Constitutive equation and hot processing map for hot deformation of TA15 titanium alloy[J]. Hot Working Technology,2017(17):33-37.)
    [11] 杨建辉,张鹏,赵升吨. TC4-DT钛合金热变形本构方程[J]. 塑性工程学报,2016,23(2):120-125.

    YANG J H,ZHANG P,ZHAO S D. Hot deformation constitutive equation of TC4-DT titanium alloy[J]. Journal of Plasticity Engineering,2016,23(2):120-125.)
    [12] 陈海生,冯勇,马凡蛟,等. 基于BP网络Ti-6Al-3Nb-2Zr-1Mo合金等温压缩流变应力预测[J]. 稀有金属材料与工程,2016,45(6):1549-1553.

    CHEN H S,FENG Y,MA F J,et al. Isothermal compression flow stress prediction of Ti-6Al-3Nb-2Zr-1Mo alloy base on BP-ANN[J]. Rare Metal Material and Engineering,2016,45(6):1549-1553.)
    [13] 邱伟,鲁世强,欧阳德来,等. 锻态TB6钛合金热变形行为及组织演变[J]. 塑性工程学报,2010,17(3):38-43. doi: 10.3969/j.issn.1007-2012.2010.03.008

    QIU W,LU S Q,OUYANG D L,et al. Investigation on the hot temperature deformation behavior and microstructure evolution of forged titanium alloy TB6[J]. Journal of Plasticity Engineering,2010,17(3):38-43.) doi: 10.3969/j.issn.1007-2012.2010.03.008
    [14] NIE X A,HU Z,LIU H Q,et al. High temperature deformation and creep behavior of Ti-5Al-5Mo-5V-1Fe-1Cr alloy[J]. Materials Science & Engineering:A,2014,613:306-316.
    [15] PHILIPPART I,RACK H J. High temperature dynamic yielding in metastable Ti-6.8Mo-4.5F-1.5Al[J]. Materials Science & Engineering: A,1998,243(1/2):196-200.
    [16] MATSUMOTO H,KITAMURA M,LI Y,et al. Hot forging characteristic of Ti-5Al-5V-5Mo-3Cr alloy with single metastable β microstructure[J]. Materials Science & Engineering: A,2014,611:337-344.
    [17] 王哲,王新南,商国强,等. 新型超高强韧钛合金热变形行为研究[J]. 稀有金属材料与工程,2018,47(3):810-815.

    WANG Z,WANG X N,SHANG G Q,et al. Study on hot deformation behavior of new high strength and toughness titanium alloy[J]. Rare Metal Materials and Engineering,2018,47(3):810-815.)
    [18] 周盛武,董洪波,姜智勇,等. TB17钛合金热压缩流变应力分析及本构方程[J]. 塑性工程学报,2018,25(1):218-223.

    ZHOU S W,DONG H B,JIANG Z Y,et al. Flow stress analysis and constitutive equation of TB17 titanium alloy during hot compression[J]. Journal of Plasticity Engineering,2018,25(1):218-223.)
    [19] 欧阳德来,鲁世强,崔霞,等. 不同应变速率下TA15钛合金β形变过程中动态再结晶行为[J]. 稀有金属材料与工程,2011,40(2):325-330.

    OUYANG D L,LU S Q,CUI X,et al. Dynamic recrystallization of titanium alloy TA15 duringβhot process at different strain rates[J]. Rare Metal Materials and Engineering,2011,40(2):325-330.)
    [20] 孙坤,王富耻,程兴旺,等. TC6钛合金不同组织绝热剪切带的形成机理[J]. 稀有金属材料与工程,2009,38(1):34-37. doi: 10.3321/j.issn:1002-185X.2009.01.008

    SUN K,WANG F C,CHENG X W,et al. Formation mechanics of adiabatic shear band for the different microstructures of TC6 alloy[J]. Rare Metal Materials and Engineering,2009,38(1):34-37.) doi: 10.3321/j.issn:1002-185X.2009.01.008
    [21] ZHAO J,DING H,ZHAO W,et al. Modelling of the hot deformation behaviour of a titanium alloy using constitutive equations and artificial neural network[J]. Computational Materials Science,2014,92(5):47-56.
    [22] ZENER C,HOLLOMON J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics,1944,15(1):22-32. doi: 10.1063/1.1707363
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  2772
  • HTML全文浏览量:  1494
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-17
  • 修回日期:  2018-11-29
  • 网络出版日期:  2019-04-03
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回