浇注系统对离心铸造TiAl合金杆形件缩孔缺陷的影响

胡海涛 张熹雯 朱春雷 李胜 张继

胡海涛, 张熹雯, 朱春雷, 李胜, 张继. 浇注系统对离心铸造TiAl合金杆形件缩孔缺陷的影响[J]. 航空材料学报, 2019, 39(3): 53-61. doi: 10.11868/j.issn.1005-5053.2018.000106
引用本文: 胡海涛, 张熹雯, 朱春雷, 李胜, 张继. 浇注系统对离心铸造TiAl合金杆形件缩孔缺陷的影响[J]. 航空材料学报, 2019, 39(3): 53-61. doi: 10.11868/j.issn.1005-5053.2018.000106
Haitao HU, Xiwen ZHANG, Chunlei ZHU, Sheng LI, Ji ZHANG. Effect of pouring system on shrinkage porosity of TiAl alloy rod castings by centrifugal casting[J]. Journal of Aeronautical Materials, 2019, 39(3): 53-61. doi: 10.11868/j.issn.1005-5053.2018.000106
Citation: Haitao HU, Xiwen ZHANG, Chunlei ZHU, Sheng LI, Ji ZHANG. Effect of pouring system on shrinkage porosity of TiAl alloy rod castings by centrifugal casting[J]. Journal of Aeronautical Materials, 2019, 39(3): 53-61. doi: 10.11868/j.issn.1005-5053.2018.000106

浇注系统对离心铸造TiAl合金杆形件缩孔缺陷的影响

doi: 10.11868/j.issn.1005-5053.2018.000106
详细信息
    通讯作者:

    朱春雷(1984—),男,博士,高级工程师,主要从事TiAl合金铸造工艺和力学性能研究,(E-mail)15011595579@163.com

  • 中图分类号: TG244+.4

Effect of pouring system on shrinkage porosity of TiAl alloy rod castings by centrifugal casting

  • 摘要: 采用数值模拟方法研究杆形件直径和补缩冒口结构对离心铸造TiAl合金杆形件缩孔缺陷的影响,并根据充型和凝固温度场对影响的原因进行分析。结果表明:杆形件直径由16 mm增加到20 mm,并进一步设计成入口处直径20 mm、远端直径16 mm的锥形,杆形件补缩通道被阻塞的趋势逐渐减小,用于补缩的金属液温度提高,凝固时间逐渐增长,因而补缩效果提高,杆形件缩孔缺陷水平逐渐降低;基于杆形件的锥形设计,相比无补缩冒口的杆形件,增加环形补缩冒口,充型时金属液顺序凝固趋势减弱,凝固时用于补缩的金属液温度降低,凝固时间缩短,因而补缩效果降低,缩孔缺陷水平略有提高;增加锥形补缩冒口,充型时金属液顺序凝固趋势增强,凝固时用于补缩的金属液温度提高,凝固时间增长,因而补缩效果提高,缩孔缺陷水平降低。优选最佳设计进行了浇注实验,杆形件剖面最大缺陷孔隙率平均值与模拟实验的结果基本一致。

     

  • 图  1  杆形件浇注系统三维模型

    Figure  1.  Three-dimensional model of the pouring system for rod casting

    图  2  具有不同直径杆形件的浇注系统

    Figure  2.  Pouring systems of rod castings with different diameters (a)ϕ16 mm;(b)ϕ20 mm;(c)ϕ16-20 mm

    图  3  不同直径杆形件的缩孔缺陷分布

    Figure  3.  Shrinkage porosity distributions of rod castings with different diameters (a)ϕ16 mm;(b)ϕ20 mm;(c)ϕ16-20 mm

    图  4  杆形件充型与凝固温度场 (a)充型温度场;(b)凝固温度场

    Figure  4.  Filling and solidification temperature fields of rod castings(a)filling temperature field;(b)solidification temperature field

    图  5  不同直径杆形件的缩孔缺陷数量和平均孔隙率

    Figure  5.  Shrinkage porosity number and average porosity of rod castings with different diameters

    图  6  不同直径杆形件的凝固温度场 (a)凝固10 mm;(b)凝固40 mm;(c)凝固70 mm

    Figure  6.  Solidification temperature fields of rod castings with different diameters (a)solidification 10 mm;(b)solidification 40 mm;(c)solidification 70 mm

    图  7  不同直径杆形件的凝固时间

    Figure  7.  Solidification time of rod castings with different diameters

    图  8  具有不同结构补缩冒口的浇注系统 (a)无补缩冒口;(b)环形补缩冒口;(c)锥形补缩冒口

    Figure  8.  Pouring systems with different structural risers (a)no feeding riser;(b)ring feeding riser;(c)cone feeding riser

    图  9  具有不同结构补缩冒口杆形件的缩孔缺陷分布 (a)无补缩冒口;(b)环形补缩冒口;(c)锥形补缩冒口

    Figure  9.  Shrinkage porosity distributions of rod castings with different structural risers (a)no feeding riser;(b)ring feeding riser;(c)cone feeding riser

    图  10  具有不同结构补缩冒口杆形件的缩孔缺陷数量和平均孔隙率

    Figure  10.  Shrinkage porosity number and average porosity of rod castings with different structural risers

    图  11  具有不同结构补缩冒口杆形件的充型温度场 (a)充型10 mm;(b)充型50 mm;(c)充型100 mm

    Figure  11.  Filling temperature fields of rod castings with different structural risers (a)filling 10 mm;(b)filling 50 mm;(c)filling 100 mm

    图  12  具有不同结构补缩冒口杆形件的凝固温度场 (a)凝固10 mm;(b)凝固40 mm;(c)凝固70 mm

    Figure  12.  Solidification temperature fields of rod castings with different structural risers (a)solidification 10 mm;(b)solidification 40 mm;(c)solidification 70 mm

    图  13  具有不同结构补缩冒口杆形件的凝固时间

    Figure  13.  Solidification time of rod castings with different structural risers

    图  14  最优系统浇筑的4根TiAl合金杆形件剖面照片

    Figure  14.  Sectional photograph of 4 TiAl alloy rods casted by the best system

    图  15  TiAl合金杆形件微观缺陷照片(a)~(d)分别对应图14(1)~(4)

    Figure  15.  Microscopic shrinkage porosity photographs of TiAl alloy rod castings(a)~(d)corresponding respectively to(1)~(4)in fig.14

    表  1  TiAl合金及氧化钇型壳的主要热物性参数

    Table  1.   Thermal parameters of TiAl alloy and yttria mold

    Material Density/
    (kg•m–3
    Thermal conductivity/
    (W•m–1•K–1
    Specific heat/
    (kJ•kg–1•K–1
    Latent heat/
    (kJ•kg–1
    Solidification
    temperature
    range/℃
    Viscosity
    coefficient/
    (Pa•s)
    Interface heat
    transfer coefficient/
    (W•m–2•K–1
    TiAl alloy 3450-3872 15-28[15] 0.61-0.78[15] 400[15] 1480-1515 (4.2-5.4)×10–3[17] 1500[18]
    Yttria mold 4200[16] 2.1-2.4[16] 0.7-1.0[16]
    下载: 导出CSV
  • [1] JONES P E,PORTER W J,EYLON D,et al. Development of a low cost permanent mold casting process for TiAl automotive valves[J]. Gamma Titanium Aluminides,1995:53-62.
    [2] 盛文斌,李东,杨锐,等. 金属型铸造Ti-48%Al-2%Cr-2%Nb合金汽车排气阀的研制[J]. 铸造,2001,50(3):129-133. doi: 10.3321/j.issn:1001-4977.2001.03.003

    SHENG W B,LI D,YANG R,et al. Research on Ti-48%Al-2%Cr-2%Nb automobile exhaust valve cast by centrifugal casting process in permanent mold[J]. Foundry,2001,50(3):129-133.) doi: 10.3321/j.issn:1001-4977.2001.03.003
    [3] 李胜,姜明智,王新英,等. TiAl合金反重力铸造用陶瓷型壳的调整[J]. 热加工工艺,2011,40(23):27-29. doi: 10.3969/j.issn.1001-3814.2011.23.009

    LI S,JIANG M Z,WANG X Y,et al. Modification of ceramic mould for counter-gravity casting of TiAl alloy[J]. Hot Working Technology,2011,40(23):27-29.) doi: 10.3969/j.issn.1001-3814.2011.23.009
    [4] 陈玉勇,陈艳飞,田竟,等. TiAl基合金熔模精密铸造技术的发展现状[J]. 稀有金属材料与工程,2009,38(3):554-558. doi: 10.3321/j.issn:1002-185X.2009.03.042

    CHEN Y Y,CHEN Y F,TIAN J,et al. Development and research status of investment casting TiAl-based alloys[J]. Rare Metal Materials and Engineering,2009,38(3):554-558.) doi: 10.3321/j.issn:1002-185X.2009.03.042
    [5] 盛文斌,郭景杰,苏彦庆,等. TiAl基合金离心铸造过程中的层流临界值分析[J]. 航空材料学报,1999,19(3):1-6. doi: 10.3969/j.issn.1005-5053.1999.03.001

    SHENG W B,GUO J J,SU Y Q,et al. Analysis of laminar flow critical value for TiAl based alloy during centrifugal casting process[J]. Journal of Aeronautical Materials,1999,19(3):1-6.) doi: 10.3969/j.issn.1005-5053.1999.03.001
    [6] 盛文斌,郭景杰,苏彦庆,等. TiAl基合金排气阀金属型离心铸造过程内部缺陷分析[J]. 航空材料学报,2000,20(2):40-45. doi: 10.3969/j.issn.1005-5053.2000.02.007

    SHENG W B,GUO J J,SU Y Q,et al. Analysis on inner defects in TiAl based alloy exhaust valve during the centrifugal foundry process in permanent mold[J]. Journal of Aeronautical Materials,2000,20(2):40-45.) doi: 10.3969/j.issn.1005-5053.2000.02.007
    [7] 吴士平,郭景杰,苏彦庆,等. TiAl基合金排气阀离心铸造充型过程数值模拟的试验验证[J]. 铸造,2001,50(9):560-563. doi: 10.3321/j.issn:1001-4977.2001.09.011

    WU S P,GUO J J,SU Y Q,et al. Verification of a numerical simulation of the mold filling processes on centrifugal casting of exhausting valves of TiAl based alloys[J]. Foundry,2001,50(9):560-563.) doi: 10.3321/j.issn:1001-4977.2001.09.011
    [8] 苏彦庆,刘畅,毕维升,等. TiAl基合金杆形件铸造缺陷和铸造方法的关系[J]. 特种铸造及有色合金,2002,5:11-14. doi: 10.3321/j.issn:1001-2249.2002.05.004

    SU Y Q,LIU C,BI W S,et al. Influence of casting processes on shrinkage distribution in TiAl based alloy shaft castings[J]. Special Casting and Nonferrous Alloys,2002,5:11-14.) doi: 10.3321/j.issn:1001-2249.2002.05.004
    [9] 吴士平,郭景杰,贾均. TiAl基合金排气阀立式离心铸造充型及凝固过程数值模拟[J]. 金属学报,2004,40(3):326-330. doi: 10.3321/j.issn:0412-1961.2004.03.020

    WU S P,GUO J J,JIA J. Numerical simulation of mold filling and solidification of TiAl base alloy exhaust valve in vertical centrifugal casting process[J]. Acta Metallurgica Sinica,2004,40(3):326-330.) doi: 10.3321/j.issn:0412-1961.2004.03.020
    [10] LIU K,MA Y C,GAO M,et al. Single step centrifugal casting TiAl automotive valves[J]. Intermetallics,2005,13:925-928. doi: 10.1016/j.intermet.2004.12.004
    [11] SHENG W B. Filling and solidification of TiAl melt in centrifugal field[J]. Transactions of Nonferrous Metals Society of China,2006,16(Suppl 2):719-722. doi: 10.1016/S1003-6326(06)60287-2
    [12] FU P X,KANG X H,MA Y C,et al. Centrifugal casting of TiAl exhaust valves[J]. Intermetallics,2008,16:130-138. doi: 10.1016/j.intermet.2007.08.007
    [13] 马颖澈,熊超,陈波,等. 离心铸造Ti47Al2Nb1Cr1W0.2Si合金汽车气阀的铸造特性[J]. 稀有金属材料与工程,2012,41(7):1293-1297.

    MA Y C,XIONG C,CHEN B,et al. Cast characteristics of Ti47Al2Nb1Cr1W0.2Si alloy car valves by centrifugal casting[J]. Rare Metal Materials and Engineering,2012,41(7):1293-1297.)
    [14] 李日, 马军贤, 崔启玉.铸造工艺仿真ProCAST从入门到精通[M]. 北京: 中国水利水电出版社, 2010.

    LI R, MA J X, CUI Q Y.Casting process simulation ProCAST from getting started to proficient[M]. Beijing: China Water and Power Press, 2010.
    [15] SUNG S Y,KIM Y J. Modeling of titanium aluminides turbo-charger casting[J]. Intermetallics,2007,15:468-474. doi: 10.1016/j.intermet.2006.07.009
    [16] 潘利文,高永,高文理,等. 基于ProCAST的TiAl叶片缩孔缩松预测及工艺优化[J]. 特种铸造及有色合金,2010,30(6):504-508. doi: 10.3870/tzzz.2010.06.005

    PAN L W,GAO Y,GAO W L,et al. Prediction of shrinkage porosity (hole)in TiAl based alloy blade and its processing optimization based on the ProCAST[J]. Special Casting and Nonferrous Alloys,2010,30(6):504-508.) doi: 10.3870/tzzz.2010.06.005
    [17] XIONG C,MA Y C,CHEN B,et al. Modeling of filling and solidification process for TiAl exhaust valves[J]. Acta Metallurgica Sinica,2013,26(1):33-48. doi: 10.1007/s40195-011-0503-0
    [18] LU D A. Thermophysical properties necessary for advanced casting simulation[J]. International Journal of Thermophysics,2002,29(5):1131-1146.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  2343
  • HTML全文浏览量:  1390
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-25
  • 修回日期:  2018-10-10
  • 网络出版日期:  2019-04-16
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回