形状记忆合金薄板低速冲击载荷下热力耦合行为分析

任旋畅 王骏 许英杰 张卫红

任旋畅, 王骏, 许英杰, 张卫红. 形状记忆合金薄板低速冲击载荷下热力耦合行为分析[J]. 航空材料学报, 2019, 39(3): 35-43. doi: 10.11868/j.issn.1005-5053.2018.000136
引用本文: 任旋畅, 王骏, 许英杰, 张卫红. 形状记忆合金薄板低速冲击载荷下热力耦合行为分析[J]. 航空材料学报, 2019, 39(3): 35-43. doi: 10.11868/j.issn.1005-5053.2018.000136
Xuanchang REN, Jun WANG, Yingjie XU, Weihong ZHANG. Experiment and simulation of thermomechanical coupled behavior of SMA under low velocity impact[J]. Journal of Aeronautical Materials, 2019, 39(3): 35-43. doi: 10.11868/j.issn.1005-5053.2018.000136
Citation: Xuanchang REN, Jun WANG, Yingjie XU, Weihong ZHANG. Experiment and simulation of thermomechanical coupled behavior of SMA under low velocity impact[J]. Journal of Aeronautical Materials, 2019, 39(3): 35-43. doi: 10.11868/j.issn.1005-5053.2018.000136

形状记忆合金薄板低速冲击载荷下热力耦合行为分析

doi: 10.11868/j.issn.1005-5053.2018.000136
基金项目: 国家重点研发计划(2017YFB1102800);国家自然基金 (11872310, 11802241, 5171101743);陕西省科技新星项目 (2017KJXX-31)
详细信息
    通讯作者:

    许英杰(1984—),男,博士,教授,主要从事先进材料与结构的仿真和设计的研究,(E-mail)xu.yingjie@nwpu.edu.cn

Experiment and simulation of thermomechanical coupled behavior of SMA under low velocity impact

  • 摘要: 进行形状记忆合金(shape memory alloy,SMA)薄板不同冲击能量条件下低速冲击实验,以SMA热力学本构模型为理论基础,通过数值手段对超弹性SMA薄板的冲击响应进行仿真分析,探究冲击载荷作用下SMA热力耦合行为特征。结果表明:数值仿真结果与实验数据吻合良好,有效表征了SMA薄板冲击过程中的变形、相变、耗散、温变等热力耦合行为特征。

     

  • 图  2  差示扫描量热法下的SMA热分析图

    Figure  2.  Phase transformation temperatures of SMA measured

    图  1  冲击实验设备 (a)CEAST 9340落锤冲击系统;(b)热成像仪SC7000

    Figure  1.  Impact test equipment (a)CEAST 9340 drop hammer impact system;(b)infrared camera SC7000

    图  3  不同冲击能量下的冲击力-时间曲线

    Figure  3.  Impact force-time curves under different impact energies

    图  4  不同冲击能量下的力-位移曲线

    Figure  4.  Force-displacement curves at different impact energies

    图  5  不同冲击能量下的冲击瞬时热力学响应 (a)10 J;(b)15 J;(c)20 J;(d)25 J ;(1)热成像图;(2)温度梯度直方图

    Figure  5.  Instantaneous thermodynamic response of impact under different impact energies (a)10 J;(b)15 J;(c)20 J;(d)25 J;(1)thermal image;(2)temperature gradient histogram

    图  6  不同冲击能量下的最大温度变化

    Figure  6.  Maximum temperature change at different impact energies

    图  7  薄板件有限元单元划分示意图

    Figure  7.  Schematic diagram of finite element unit division of sheet part

    图  8  薄板所设置边界条件 (a)俯视图;(b)侧视图

    Figure  8.  Boundary conditions for the sheet (a) top view;(b) side view

    图  9  仿真过程中SMA薄板背部场状态 (a)Von-Mises应力云图;(b)温度场云图;(c)位移场云图;(d)马氏体体积分数云图

    Figure  9.  Field state of SMA sheet during simulation (a) Von-Mises stress cloud map;(b) temperature field cloud map;(c) displacement field cloud map;(d) martensite volume fraction cloud map

    图  10  仿真与实验力的结果对比

    Figure  10.  Results comparison between simulation and test force

    图  11  仿真与实验过程位移对比

    Figure  11.  Comparison of displacements results between simulation and test process

    图  12  仿真与实验过程温度对比

    Figure  12.  Temperature comparison between simulation and test process

    图  13  冲击过程中马氏体体积分数局部放大图

    Figure  13.  Local enlarged view of martensite volume fraction during impact

    表  1  SMA薄板的力学参数

    Table  1.   Mechanical parameters of SMA sheet

    Material
    parameter
    Value/
    MPa
    Material
    parameter
    Value/
    MPa
    EA 75919 σ$ {}_{{\rm A}_{\rm f}}$ 160.80
    EM 70098 σ$ {}_{{\rm M}_{\rm s}}$ 588.47
    σAs 570.71 σ$ {}_{{\rm M}_{\rm f}}$ 898.09
    下载: 导出CSV
  • [1] NEMAT-NASSER S,GUO W G. Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures[J]. Mechanics of Materials,2006,38(5):463-474.
    [2] 黄学文,董光能,王慧,等. TiNi形状记忆合金阻尼特性的研究[J]. 材料工程,2003(5):3-6. doi: 10.3969/j.issn.1001-4381.2003.05.001

    HUANG X W,DONG G N,WANG H,et al. Study on damping characteristics of TiNi shape memory alloy[J]. Journal of Materials and Engineering,2003(5):3-6.) doi: 10.3969/j.issn.1001-4381.2003.05.001
    [3] SUN T,WANG L P,WANG M. (Ti, O)/Ti and (Ti, O, N)/Ti composite coatings fabricated via PⅢD for the medical application of NiTi shape memory alloy[J]. Journal of Biomedical Materials Research:Part B:Applied Biomaterials,2011,96(2):249-260. doi: 10.1002/jbm.b.v96b.2
    [4] 宁聪琴,周玉. 医用钛合金的发展及研究现状[J]. 材料科学与工艺,2002,10(1):100-106. doi: 10.3969/j.issn.1005-0299.2002.01.026

    NING C Q,ZHOU Y. Development and research status of biomedical titanium alloys[J]. Materials Science and Technology,2002,10(1):100-106.) doi: 10.3969/j.issn.1005-0299.2002.01.026
    [5] JANI J M,LEARY M,SUBIC A,et al. A review of shape memory alloy research, applications and opportunities[J]. Materials and Design,2014,56(4):1078-1113.
    [6] 钱辉,李宏男,任文杰,等. 形状记忆合金复合摩擦阻尼器设计及试验研究[J]. 建筑结构学报,2011,32(9):58-64.

    QIAN H,LI H N,REN W J,et al. Experimental investigation of an innovative hybrid shape memory alloys friction damper[J]. Journal of Building Structures,2011,32(9):58-64.)
    [7] HASHEMI S M T,KHADEM S E. Modeling and analysis of the vibration behavior of a shape memory alloy beam[J]. International Journal of Mechanical Sciences,2006,48(1):44-52. doi: 10.1016/j.ijmecsci.2005.09.011
    [8] 邹广平,李雨蕾,王丹丹,等. 连续冲击载荷下镍钛形状记忆合金动态力学性能的实验研究[J]. 功能材料,2012,43(13):1678-1681. doi: 10.3969/j.issn.1001-9731.2012.13.005

    ZOU G P,LI Y L,WANG D D,et al. The experimental study of dynamic mechanical property of Ni-Ti shape memory alloy[J]. Journal of Functional Materials,2012,43(13):1678-1681.) doi: 10.3969/j.issn.1001-9731.2012.13.005
    [9] SPEICHER M S,DESROCHES R,LEON R T. Experimental results of a NiTi shape memory alloy (SMA)-based recentering beam-column connection[J]. Engineering Structures,2011,33(9):2448-2457. doi: 10.1016/j.engstruct.2011.04.018
    [10] RAGHAVAN J,BARTKIEWICZ T,BOYKO S,et al. Damping, tensile, and impact properties of superelastic shape memory alloy (SMA) fiber-reinforced polymer composites[J]. Composites:Part B,2010,41(3):214-222. doi: 10.1016/j.compositesb.2009.10.009
    [11] MEO M,MARULO F,GUIDA M,et al. Shape memory alloy hybrid composites for improved impact properties for aeronautical applications[J]. Composite Structures,2013,95(1):756-766.
    [12] KIM E,LEE I,ROH J,et al. Effects of shape memory alloys on low velocity impact characteristics of composite plate[J]. Composite Structures,2011,93(11):2903-2909. doi: 10.1016/j.compstruct.2011.05.013
    [13] TANAKA K. A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior[J]. Res. Mechanica,1986,18:251-263.
    [14] LIANG C,ROGERS C A. One-dimensional thermomechanical constitutive relations for shape memory materials[J]. Journal of Intelligent Material Systems and Structures,1990,1(2):207-234.
    [15] BRINSON L C,LAMMERING R. Finite element analysis of the behavior of shape memory alloys and their applications[J]. International Journal of Solids & Structures,1993,30:3261-3280.
    [16] BO Z,LAGOUDAS D C. Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: theoretical derivations[J]. International Journal of Engineering Science,1999,37(9):1089-1140. doi: 10.1016/S0020-7225(98)00113-X
    [17] LAGOUDAS D C,SHU S G. Residual deformation of active structures with SMA actuators[J]. International Journal of Mechanical Sciences,1999,41(6):595-619. doi: 10.1016/S0020-7403(98)00035-6
    [18] ZAKI W,MOUMNI Z,et al. A 3D model of the cyclic thermomechanical behavior of shape memory alloys[J]. Journal of the Mechanics and Physics of Solids,2007,55(11):2427-2454. doi: 10.1016/j.jmps.2007.03.011
    [19] MORIN C,MOUMNI Z,ZAKI W. Thermomechanical coupling in shape memory alloys under cyclic loadings: experimental analysis and constitutive modeling[J]. International Journal of Plasticity,2011,27(12):1959-1980. doi: 10.1016/j.ijplas.2011.05.005
    [20] CHAO Y,KANG G,KAN Q,et al. Rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy: thermo-mechanical coupled and physical mechanism-based constitutive model[J]. International Journal of Plasticity,2015,72:60-90.
    [21] WANG J,MOUMNI Z,ZHANG W H. A thermomechanically coupled finite-strain constitutive model for cyclic pseudoelasticity of polycrystalline shape memory alloys[J]. International Journal of Plasticity,2017,97:194-221.
    [22] NG.K.L,SUN.Q.P. Stress-induced phase transformation and detwinning in NiTi polycrystalline shape memory alloy tubes[J]. Mechanics of Materials,2006,38(1/2):41-56. doi: 10.1016/j.mechmat.2005.05.008
    [23] WANG J,MOUMNI Z,ZHANG W H,et al. A 3D finite-strain-based constitutive model for shape memory alloys ---counting for thermomechanical coupling and martensite reorientation[J]. Smart Materials and Structures,2017,26(6):65006. doi: 10.1088/1361-665X/aa6c17
    [24] WANG J,MOUMNI Z,ZHANG W H,et al. A thermomechanically coupled finite deformation constitutive model for shape memory alloys based on hencky strain[J]. International Journal of Engineering Science,2017,117:51-77.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  2562
  • HTML全文浏览量:  1470
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-05
  • 修回日期:  2019-02-27
  • 网络出版日期:  2019-03-28
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回