新型热障涂层陶瓷隔热层材料

薛召露 郭洪波 宫声凯 徐惠彬

薛召露, 郭洪波, 宫声凯, 徐惠彬. 新型热障涂层陶瓷隔热层材料[J]. 航空材料学报, 2018, 38(2): 10-20. doi: 10.11868/j.issn.1005-5053.2018.001001
引用本文: 薛召露, 郭洪波, 宫声凯, 徐惠彬. 新型热障涂层陶瓷隔热层材料[J]. 航空材料学报, 2018, 38(2): 10-20. doi: 10.11868/j.issn.1005-5053.2018.001001
Zhaolu XUE, Hongbo GUO, Shengkai GONG, Huibin XU. Novel Ceramic Materials for Thermal Barrier Coatings[J]. Journal of Aeronautical Materials, 2018, 38(2): 10-20. doi: 10.11868/j.issn.1005-5053.2018.001001
Citation: Zhaolu XUE, Hongbo GUO, Shengkai GONG, Huibin XU. Novel Ceramic Materials for Thermal Barrier Coatings[J]. Journal of Aeronautical Materials, 2018, 38(2): 10-20. doi: 10.11868/j.issn.1005-5053.2018.001001

新型热障涂层陶瓷隔热层材料

doi: 10.11868/j.issn.1005-5053.2018.001001
基金项目: 国家自然基金(51590894, 51425102, 51231001)
详细信息
    通讯作者:

    郭洪波(1971—),男,博士,教授,主要从事先进航空发动机高温/超高温防护涂层研究,(E-mail)guo.hongbo@buaa.edu.cn

  • 中图分类号: TG174.4

Novel Ceramic Materials for Thermal Barrier Coatings

  • 摘要: 热障涂层(thermal barrier coatings, TBCs)是先进燃气涡轮发动机核心热端部件高压涡轮叶片的关键技术,已经在航空发动机和地面燃气轮机上获得成功应用的热障涂层陶瓷隔热层材料为氧化钇部分稳定氧化锆(YSZ)。由于受高温稳定性、隔热性能等的局限,YSZ已不能满足下一代航空发动机的发展要求。本文介绍了近年来国内外在多元氧化物掺杂氧化锆、A2B2O7型烧绿石或萤石化合物、磁铅石型六铝酸盐化合物、石榴石型化合物、钙钛矿结构化合物和其他新型氧化物陶瓷等先进超高温热障涂层陶瓷材料方面的研究进展,并展望了今后超高温热障涂层陶瓷材料所面临的挑战和发展动向。

     

  • 图  1  典型热障涂层的示意图[8]

    Figure  1.  Schematic diagram of typical TBC[8]

    图  2  Sc2O3-Gd2O3共掺杂改性ZrO2陶瓷的热导率[14]

    Figure  2.  Thermal conductivities of Sc2O3-Gd2O3 co-doped ZrO2 ceramic [14]

    图  3  EB-PVD 3Gd3Yb-YSZ热障涂层截面(a)和燃气热冲击15000次后表面形貌(b)[15]

    Figure  3.  Section morphologies of EB-PVD 3Gd3Yb-YSZ TBC as-deposited (a)and surface morphologies after flame thermal shockof 15000 cycles (b)[15]

    图  4  晶胞结构图 (a)萤石结构;(b)烧绿石结构

    Figure  4.  Crystal structure (a)fluorite;(b)pyrochlore

    图  5  Y3Al5O12晶体结构示意图

    Figure  5.  Schematic diagram of crystal structure of Y3Al5O12

    图  6  (Y1–xYbx3Al5O12陶瓷热导率随Yb掺杂浓度的变化[57]

    Figure  6.  Thermal conductivity of (Y1–xYbx3Al5O12 ceramics as a function of Yb doping concentration[57]

    图  7  BaLn2Ti3O10 (Ln: Sm, Nd, Pr, La)晶体结构模型[65] (a)(100)面;(b)(010)面

    Figure  7.  BaLn2Ti3O10 (Ln: Sm, Nd, Pr, La) crystal structure model showing a tri-perovskite layer separated by a BaO layer along c-axis[65] (a)(100)plane;(b)(010)plane

    图  8  InFeO3(ZnO)m晶胞结构图 (a)m = 奇数时,InFeO3(ZnO)m属于R3m空间点群;(b)m = 偶数时,InFeO3(ZnO)m属于P63空间点群(In原子位于八面体位置,Fe原子和Zn原子位于三角双锥体位置,部分Zn原子位于四面体位置)[71]

    Figure  8.  Crystal structures of InFeO3(ZnO)m (a)R3m space group with odd m numbers;(b)P63/mmc space group with even m numbers(In atoms are at the octahedral site, Fe and Zn atoms are at the trigonal bipyramidal sites, and a part of Zn atoms is at the tetrahedral sites)[71]

    图  9  In1–xYb(Gd)xFeZnO4 (x = 0.1, 0.2) 的热导率 (a)和热膨胀系数(b)[75]

    Figure  9.  Thermal conductivities (a) and thermal expansion coefficients of In1–xYb(Gd)xFeZnO4 (x = 0, 0.1, 0.2)(b)[75]

  • [1] DAROLIA R. Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects[J]. International Materials Reviews, 2013, 58(6): 315-348 doi: 10.1179/1743280413Y.0000000019
    [2] 郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展[J]. 中国材料进展, 2009, 28(9): 18-26

    GUO H, GONG S, XU H. Progress in thermal barrier coatings for advanced aeroengines[J]. Materials China, 2009, 28(9): 18-26.)
    [3] CAO X Q, VASSEN R, STOEVER D. Ceramic materials for thermal barrier coatings[J]. Journal of the European Ceramic Society, 2004, 24(1): 1-10 doi: 10.1016/S0955-2219(03)00129-8
    [4] 郑蕾, 郭洪波, 郭磊, 等. 新一代超高温热障涂层研究[J]. 航空材料学报, 2012, 32(6): 14-24 doi: 10.3969/j.issn.1005-5053.2012.6.002

    ZHENG L, GUO H B, GUO L, et al. New generation thermal barrier coatings for ultrahigh temperature applications[J]. Journal of Aeronautical Materials, 2012, 32(6): 14-24.) doi: 10.3969/j.issn.1005-5053.2012.6.002
    [5] VASSEN R, JARLIGO M O, STEINKE T, et al. Overview on advanced thermal barrier coatings[J]. Surface and Coatings Technology, 2010, 205(4): 938-942 doi: 10.1016/j.surfcoat.2010.08.151
    [6] PADTURE N P, GELL M, JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(5566): 280-284 doi: 10.1126/science.1068609
    [7] CLARKE D R, LEVI C G. Materials design for the next generation thermal barrier coatings[J]. Annual Review of Materials Research, 2003, 33(1): 383-417 doi: 10.1146/annurev.matsci.33.011403.113718
    [8] DEREK D. Thermal barrier coatings via directed vapor deposition[D]. Charlottesville city, USA: University of the Virginia, 2000.
    [9] SUN L, GUO H, PENG H, et al. Phase stability and thermal conductivity of ytterbia and yttria co-doped zirconia[J]. Progress in Natural Science: Materials International, 2013, 23(4): 440-445 doi: 10.1016/j.pnsc.2013.06.013
    [10] VASSEN R, CAO X Q, TIETZ F, et al. Zirconates as new materials for thermal barrier coatings[J]. Journal of the American Ceramic Society, 2000, 83(8): 2023-2028
    [11] ZHU D M, MILLER R A. Development of advanced low conductivity thermal barrier coatings[J]. International Journal of Applied Ceramic Technology, 2004, 1(1): 86-94
    [12] GUO L, GUO H, GONG S, et al. Improvement on the phase stability, mechanical properties and thermal insulation of Y2O3-stabilized ZrO2 by Gd2O3 and Yb2O3 co-doping[J]. Ceramics International, 2013, 39(8): 9009-9015 doi: 10.1016/j.ceramint.2013.04.103
    [13] 冀晓鹃, 宫声凯, 徐惠彬, 等. 添加稀土元素对热障涂层YSZ陶瓷层晶格畸变的影响[J]. 航空学报, 2007, 28(1): 196-200 doi: 10.3321/j.issn:1000-6893.2007.01.038

    JI X J, GONG S K, XU H B, et al. Influence of rare earth elements additions in YSZ ceramic coatings of thermal barrier coatings on lattice distortion[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1): 196-200.) doi: 10.3321/j.issn:1000-6893.2007.01.038
    [14] SUN L, GUO H, PENG H, et al. Influence of partial substitution of Sc2O3 with Gd2O3 on the phase stability and thermal conductivity of Sc2O3-doped ZrO2[J]. Ceramics International, 2013, 39(3): 3447-3451 doi: 10.1016/j.ceramint.2012.09.100
    [15] ZHANG Y, GUO L, YANG Y, et al. Influence of Gd2O3 and Yb2O3 Co-doping on phase stability, thermo-physical properties and sintering of 8YSZ[J]. Chinese Journal of Aeronautics, 2012, 25(6): 948-953 doi: 10.1016/S1000-9361(11)60466-4
    [16] SONG X, XIE M, MU R, et al. Influence of the partial substitution of Y2O3 with Ln2O3 (Ln = Nd, Sm, Gd) on the phase structure and thermophysical properties of ZrO2-Nb2O5-Y2O3 ceramics[J]. Acta Materialia, 2011, 59(10): 3895-3902 doi: 10.1016/j.actamat.2011.03.014
    [17] HABIBI M H, WANG L, LIANG J, et al. An investigation on hot corrosion behavior of YSZ-Ta2O5 in Na2SO4 + V2O5 salt at 1100 ℃[J]. Corrosion Science, 2013, 75: 409-414 doi: 10.1016/j.corsci.2013.06.025
    [18] LIMARGA A M, SHIAN S, LECKIE R M, et al. Thermal conductivity of single-and multi-phase compositions in the ZrO2-Y2O3-Ta2O5 system[J]. Journal of the European Ceramic Society, 2014, 34(12): 3085-3094 doi: 10.1016/j.jeurceramsoc.2014.03.013
    [19] SHEN Y, LECKIE R M, LEVI C G, et al. Low thermal conductivity without oxygen vacancies in equimolar YO1.5 + TaO2.5 and YbO1.5 + TaO2.5 stabilized tetragonal zirconia ceramics[J]. Acta Materialia, 2010, 58(13): 4424-4431 doi: 10.1016/j.actamat.2010.04.040
    [20] DI GIROLAMO G, BLASI C, SCHIOPPA M, et al. Structure and thermal properties of heat treated plasma sprayed ceria-yttria co-stabilized zirconia coatings[J]. Ceramics International, 2010, 36(3): 961-968 doi: 10.1016/j.ceramint.2009.10.020
    [21] MATSUMOTO M, AOYAMA K, MATSUBARA H, et al. Thermal conductivity and phase stability of plasma sprayed ZrO2-Y2O3-La2O3 coatings[J]. Surface and Coatings Technology, 2005, 194(1): 31-35 doi: 10.1016/j.surfcoat.2004.04.078
    [22] MINERVINI L, GRIMES R W, SICKAFUS K E. Disorder in pyrochlore oxides[J]. Journal of the American Ceramic Society, 2000, 83(8): 1873-1878
    [23] ZHANG H, GUO L, MA Y, et al. Thermal cycling behavior of (Gd0.9Yb0.1)2Zr2O7/8YSZ gradient thermal barrier coatings deposited on Hf-doped NiAl bond coat by EB-PVD[J]. Surface and Coatings Technology, 2014, 258: 950-955 doi: 10.1016/j.surfcoat.2014.07.051
    [24] 刘玲, 王富耻, 马壮, 等. (Mg0.05La0.45Sm0.5)2(Zr0.7Ce0.3)2O6.95陶瓷的制备与导热性能研究[J]. 材料工程, 2010(增刊 2): 127-129.

    LIU L, WANG F C, MA Z, et al. Preparation and thermal conductivity of (Mg0.05La0.45Sm0.5)2(Zr0.7Ce0.3)2O6.95 ceramic for thermal barrier coatings[J]. Journal of Materials Engineering, 2010(Suppl 2): 127-129.
    [25] 周宏明, 易丹青. 热障涂层用Dy2Zr2O7陶瓷粉末制备及其热物理性能研究[J]. 航空材料学报, 2008, 28(1): 65-70 doi: 10.3969/j.issn.1005-5053.2008.01.014

    ZHOU H M, YI D Q. Research on preparation and thermophysical properties of Dy2Zr2O7 ceramic powder[J]. Journal of Aeronautical Materials, 2008, 28(1): 65-70.) doi: 10.3969/j.issn.1005-5053.2008.01.014
    [26] LEVI C G. Emerging materials and processes for thermal barrier systems[J]. Current Opinion in Solid State and Materials Science, 2004, 8(1): 77-91 doi: 10.1016/j.cossms.2004.03.009
    [27] XU Z H, HE S M, HE L M, et al. Novel thermal barrier coatings based on La2(Zr0.7Ce0.3)2O7/8YSZ Double-ceramic-layer systems deposited by electron beam physical vapor deposition[J]. Journal of Alloys and Compounds, 2011, 509(11): 4273-4283 doi: 10.1016/j.jallcom.2010.12.203
    [28] 牟仁德, 许振华, 贺世美, 等. 电子束物理气相沉积La2Zr2O7热障涂层研究[J]. 航空材料学报, 2009, 29(1): 32-36 doi: 10.3969/j.issn.1005-5053.2009.01.007

    MU R D, XU Z H, HE S M, et al. Electron beam vapor deposited La2Zr2O7 thermal barrier coaings[J]. Journal of Aeronautical Materials, 2009, 29(1): 32-36.) doi: 10.3969/j.issn.1005-5053.2009.01.007
    [29] 郭磊. 氧化物掺杂锆酸钆热物理性能及热障涂层高温稳定性研究[D]. 北京: 北京航空航天大学, 2013.

    GUO L. Study on the thermo-physical properties of oxides doped Gd2Zr2O7 and high temperature stability of its thermal barrier coatings[D]. Beijing: Beihang University, 2013.
    [30] 项建英, 黄继华, 陈树海, 等. La2Zr2O7弹性常数及最低热导率的第一性原理计算[J]. 航空材料学报, 2012, 32(5): 1-6 doi: 10.3969/j.issn.1005-5053.2012.5.001

    XIANG J Y, HUANG J H, CHEN S H, et al. First principle calculation of elastic constant and minimum thermal conductivity of La2Zr2O7 ceramic[J]. Journal of Aeronautical Materials, 2012, 32(5): 1-6.) doi: 10.3969/j.issn.1005-5053.2012.5.001
    [31] WANG Y, YANG F, XIAO P. Glass-like thermal conductivities in (La1– x1Yx1)2(Zr1– x2Yx2)2O7– x2 (x = x1 + x2, 0≤x≤1.0) solid solutions[J]. Acta Materialia, 2012, 60(20): 7024-7033 doi: 10.1016/j.actamat.2012.08.063
    [32] GUO L, GUO H, PENG H, et al. Thermophysical properties of Yb2O3 doped Gd2Zr2O7 and thermal cycling durability of (Gd0.9Yb0.1)2Zr2O7/YSZ thermal barrier coatings[J]. Journal of the European Ceramic Society, 2014, 34(5): 1255-1263 doi: 10.1016/j.jeurceramsoc.2013.11.035
    [33] ZHAO X, GUO L, WANG C, et al. Effect of phase structure evolution on thermal expansion and toughness of (Nd1– xScx)2Zr2O7 (x = 0, 0.025, 0.05, 0.075, 0.1) ceramics[J]. Journal of Materials Science & Technology, 2017, 33(2): 192-197
    [34] QU Z, WAN C, PAN W. Thermal expansion and defect chemistry of MgO-doped Sm2Zr2O7[J]. Chemistry of Materials, 2007, 19(20): 4913-4918 doi: 10.1021/cm071615z
    [35] SCHELLING P K, PHILLPOT S R, GRIMES R W. Optimum pyrochlore compositions for low thermal conductivity[J]. Philosophical Magazine Letters, 2004, 84(2): 127-137 doi: 10.1080/09500830310001646699
    [36] LIU B, WANG J Y, LI F Z, et al. Theoretical elastic stiffness, structural stability and thermal conductivity of La2T2O7 (T = Ge, Ti, Sn, Zr, Hf) pyrochlore[J]. Acta Materialia, 2010, 58(13): 4369-4377 doi: 10.1016/j.actamat.2010.04.031
    [37] QU Z, WAN C, PAN W. Thermophysical properties of rare-earth stannates: effect of pyrochlore structure[J]. Acta Materialia, 2012, 60(6): 2939-2949
    [38] MA W, GONG S K, XU H B, et al. On improving the phase stability and thermal expansion coefficients of lanthanum cerium oxide solid solutions[J]. Scripta Materialia, 2006, 54(8): 1505-1508 doi: 10.1016/j.scriptamat.2005.12.043
    [39] 齐峰, 樊自拴, 孙冬柏, 等. 新型热障涂层材料镁基六铝酸镧喷涂粉末的制备[J]. 材料工程, 2006(7): 14-18 doi: 10.3969/j.issn.1001-4381.2006.07.004

    QI F, FAN Z S, SUN D B, et al. Preparation of LaMgAl11O19 spray powder—a new thermal barrier coatings material[J]. Journal of Materials Engineering, 2006(7): 14-18.) doi: 10.3969/j.issn.1001-4381.2006.07.004
    [40] BANSAL N P, ZHU D M. Thermal properties of oxides with magnetoplumbite structure for advanced thermal barrier coatings[J]. Surface and Coatings Technology, 2008, 202(12): 2698-2703 doi: 10.1016/j.surfcoat.2007.09.048
    [41] XIE X Y, GUO H B, GONG S K, et al. Lanthanum-titanium-aluminum oxide: a novel thermal barrier coating material for applications at 1300 ℃[J]. Journal of the European Ceramic Society, 2011, 31(9): 1677-1683 doi: 10.1016/j.jeurceramsoc.2011.03.036
    [42] DHINESHKUMAR S R, DURAISELVAM M, NATARAJAN S,et al. Enhancement of strain tolerance of functionally graded LaTi2Al9O19 thermal barrier coating through ultra-short pulse based laser texturing[J]. Surface and Coatings Technology, 2016, 304: 263-271 doi: 10.1016/j.surfcoat.2016.07.018
    [43] LU H R, WANG C A, HUANG Y, et al. Multi-enhanced-phonon scattering modes in Ln-Me-A sites co-substituted LnMeA11O19 ceramics[J]. Scientific Reports, 2014, 4: 6823
    [44] LU H R, WANG C A, ZHANG C G, et al. Thermo-physical properties of rare-earth hexaaluminates LnMgAl11O19 (Ln: La, Pr, Nd, Sm, Eu and Gd) magnetoplumbite for advanced thermal barrier coatings[J]. Journal of the European Ceramic Society, 2015, 35: 1297-1306 doi: 10.1016/j.jeurceramsoc.2014.10.030
    [45] CAO X Q, ZHANG Y F, ZHANG J F, et al. Failure of the plasma-sprayed coating of lanthanum hexaluminate[J]. Journal of the European Ceramic Society, 2008, 28(10): 1979-1986 doi: 10.1016/j.jeurceramsoc.2008.01.023
    [46] ZHU D, FOX D S, BANASAL N P, et al. Advanced oxide material systems for 1650 ℃ thermal/environmental barrier coating applications[C]//National Aeronautics and Space Administration. Cleveland Ohio Glenn Research Center: NASA, 2004: NASA-GRC-E-14726.
    [47] XIE X Y, GUO H B, GONG S K. Mechanical properties of LaTi2Al9O19 and thermal cycling behaviors of plasma-sprayed LaTi2Al9O19/YSZ thermal barrier coatings[J]. Journal of Thermal Spray Technology, 2010, 19(6): 1179-1185 doi: 10.1007/s11666-010-9529-5
    [48] XIE X Y, GUO H B, GONG S K, et al. Thermal cycling behavior and failure mechanism of LaTi2Al9O19/YSZ thermal barrier coatings exposed to gas flame[J]. Surface and Coatings Technology, 2011, 205(17/18): 4291-4298
    [49] 郝维维, 郑蕾, 郭洪波, 等. 等离子喷涂LaTi2Al9O19热障涂层的微观组织结构及热物理性能[J]. 航空学报, 2013, 34(6): 1485-1492

    HAO W W, ZHENG L, GUO H B, et al. Microstructure and thermo-physical properties of plasma sprayed LaTi2Al9O19 thermal barrier coatings[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6): 1485-1492.)
    [50] XIE X Y, GUO H B, GONG S K, et al. Hot corrosion behavior of double-ceramic-layer LaTi2Al9O19/YSZ thermal barrier coatings[J]. Chinese Journal of Aeronautics, 2012, 25(1): 137-142 doi: 10.1016/S1000-9361(11)60372-5
    [51] PADTURE N P, KLEMENS P G. Low thermal conductivity in garnets[J]. Journal of the American Ceramic Society, 1997, 80: 1018-1020
    [52] 梁明德, 于继平, 张鑫, 等. 高温热障涂层陶瓷层材料研究进展[J]. 热喷涂技术, 2013, 5(2): 1-9 doi: 10.3969/j.issn.1674-7127.2013.02.001

    LIANG M D, YU J P, ZHANG X, et al. Progress in ceramic materials for high temperature thermal barrier coatings[J]. Thermal Spray Technology, 2013, 5(2): 1-9.) doi: 10.3969/j.issn.1674-7127.2013.02.001
    [53] 房明浩, 刘艳改, 黄朝晖, 等. 热障涂层用YxGd3– xAl5O12陶瓷的固相合成及其机理研究[J]. 稀有金属材料与工程, 2007, 36: 263-265 doi: 10.3321/j.issn:1002-185x.2007.z1.077

    FANG M H, LIU Y G, HUANG Z H, et al. Synthesis of YxGd3–xAl5O12for Thermal barrier coating by solid-state reaction method[J]. Rare Metal Materials and Enginering, 2007, 36: 263-265.) doi: 10.3321/j.issn:1002-185x.2007.z1.077
    [54] 彭鹏, 张雷, 喻翔, 等. DyxEr3– xAl5O12稀土铝酸盐材料的固相合成[J]. 人工晶体学报, 2010, 39(4): 993-996 doi: 10.3969/j.issn.1000-985X.2010.04.033

    PENG P, ZHANG L, YU X, et al. Synthesis of DyxEr3–xAl5O12 rare earth aluminate materials by solid-state reaction method[J]. Journal of Synthetic Crystals, 2010, 39(4): 993-996.) doi: 10.3969/j.issn.1000-985X.2010.04.033
    [55] ZHOU Y, XIANG H, FENG Z. Theoretical investigation on mechanical and thermal properties of a promising thermal barrier material: Yb3Al5O12[J]. Journal of Materials Science & Technology, 2014, 30(7): 631-638
    [56] LIU Y G, PENG P, FANG M, et al. Y3– xErxAl5O12 aluminate ceramics: preparation, thermal properties and theoretical model of thermal conductivity[J]. Advanced Engineering Materials, 2012, 14(3): 170-177 doi: 10.1002/adem.201100122
    [57] XUE Z, MA Y, GONG S, et al. Influence of Yb3+ doping on phase stability and thermophysical properties of (Y1– xYbx)3Al5O12 under high temperature[J]. Ceramics International, 2017, 43(9): 7153-7158 doi: 10.1016/j.ceramint.2017.02.150
    [58] XUE Z, MA Y, GUO H, et al. The influence of Gd doping on thermophysical properties, elasticity modulus and phase stability of garnet-type (Y1– xGdx)3Al5O12 ceramics[J]. Journal of the European Ceramic Society, 2017, 37(13): 4171-4177 doi: 10.1016/j.jeurceramsoc.2017.05.033
    [59] WANG Y H, LIU Z G, OUYANG J H, et al. Preparation and thermophysical properties of LaMgAl11O19-Yb3Al5O12, ceramic composites[J]. Ceramics International, 2011, 37(7): 2489-2493 doi: 10.1016/j.ceramint.2011.03.039
    [60] SU Y J, TRICE R W, FABER K T, et al. Thermal conductivity, phase stability, and oxidation resistance of Y3Al5O12 (YAG)/Y2O3-ZrO2 (YSZ) thermal-barrier coatings[J]. Oxidation of Metals, 2004, 61(3/4): 253-271 doi: 10.1023/B:OXID.0000025334.02788.d3
    [61] MA W, MACK D E, VASSEN R, et al. Perovskite-type strontium zirconate as a new material for thermal barrier coatings[J]. Journal of the American Ceramic Society, 2008, 91(8): 2630-2635 doi: 10.1111/jace.2008.91.issue-8
    [62] MA W, MACK D, MALZBENDER J, et al. Yb2O3 and Gd2O3 doped strontium zirconate for thermal barrier coatings[J]. Journal of the European Ceramic Society, 2008, 28(16): 3071-3081 doi: 10.1016/j.jeurceramsoc.2008.05.013
    [63] 马文, 宋峰雨, 董红英, 等. Y2O3与Gd2O3共掺杂SrZrO3热障涂层材料的热物理性能[J]. 无机材料学报, 2012, 27(2): 209-213

    MA W, SONG F Y, DONG H Y, et al. Thermophysical properties of Y2O3 and Gd2O3 co-doped SrZrO3 thermal barrier coating material[J]. Journal of Inorganic Materials, 2012, 27(2): 209-213.)
    [64] 张珊榕, 董红英, 马文, 等. 等离子喷涂SrZrO3热障涂层的CaO-MgO-Al2O3-SiO2 (CMAS) 腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 53-57

    ZHANG S R, DONG H Y, MA W, et al. Corrosion resistance of air plasma sprayed thermal barrier coating SrZrO3 on superalloy In718 againsCaO-MgO-Al2O3-SiO2 (CMAS)[J]. Journal of Chinese Society for Corrosion and Protection, 2017, 37(1): 53-57.)
    [65] GUO L, GUO H B, MA G H, et al. Ruddlesden-Popper structured BaLa2Ti3O10, a highly anisotropic material for thermal barrier coatings[J]. Ceramics International, 2012, 38(5): 4345-4352 doi: 10.1016/j.ceramint.2012.02.017
    [66] GUO H B, ZHANG H J, MA G H, et al. Thermo-physical and thermal cycling properties of plasma-sprayed BaLa2Ti3O10 coating as potential thermal barrier materials[J]. Surface and Coatings Technology, 2009, 204(5): 691-696 doi: 10.1016/j.surfcoat.2009.09.009
    [67] FENG J, XIAO B, ZHOU R, et al. Anisotropic elastic and thermal properties of the double perovskite slab-rock salt layer Ln2SrAl2O7 (Ln = La, Nd, Sm, Eu, Gd or Dy) natural superlattice structure[J]. Acta Materialia, 2012, 60(8): 3380-3392 doi: 10.1016/j.actamat.2012.03.004
    [68] WAN C L, QU Z X, HE Y, et al. Ultralow thermal conductivity in highly anion-defective aluminates[J]. Physical Review Letters, 2008, 101(8): 085901 doi: 10.1103/PhysRevLett.101.085901
    [69] LI M, CHENG Y, GUO L, et al. Preparation of nanostructured Gd2Zr2O7-LaPO4 thermal barrier coatings and their calcium-magnesium-alumina-silicate (CMAS) resistance[J]. Journal of the European Ceramic Society, 2017, 37(10): 3425-3434 doi: 10.1016/j.jeurceramsoc.2017.03.069
    [70] WANG F, GUO L, WANG C, et al. Calcium-magnesium-alumina-silicate (CMAS) resistance characteristics of LnPO4 (Ln = Nd, Sm, Gd) thermal barrier oxides[J]. Journal of the European Ceramic Society, 2017, 37(1): 289-296 doi: 10.1016/j.jeurceramsoc.2016.08.013
    [71] LI M, CHENG Y, GUO L, et al. Preparation of plasma sprayed nanostructured GdPO4 thermal barrier coating and its hot corrosion behavior in molten salts[J]. Ceramics International, 2017, 43(10): 7797-7803 doi: 10.1016/j.ceramint.2017.03.092
    [72] ZHANG X, WU H, PEI Y, et al. Investigation on thermal transport and structural properties of InFeO3(ZnO)m with modulated layer structures[J]. Acta Materialia, 2017, 136: 235-241 doi: 10.1016/j.actamat.2017.07.012
    [73] ZHANG C, PEI Y, ZHAO L D, et al. The phase stability and thermophysical properties of InFeO3 (ZnO)m (m = 2, 3, 4, 5)[J]. Journal of the European Ceramic Society, 2014, 34(1): 63-68 doi: 10.1016/j.jeurceramsoc.2013.08.001
    [74] ZHANG L, PEI Y, GUO H, et al. Thermal transport properties of InFeZnO4-YbFeZnO4 solid solutions[J]. Journal of Alloys and Compounds, 2015, 623: 203-208 doi: 10.1016/j.jallcom.2014.10.046
    [75] GUO H, ZHANG C, PEI Y, et al. Improved thermal barrier properties of InFeZnO4 ceramics by Gd/Yb doping[J]. Journal of Alloys and Compounds, 2014, 585: 404-406 doi: 10.1016/j.jallcom.2013.09.169
  • 加载中
图(9)
计量
  • 文章访问数:  8964
  • HTML全文浏览量:  3731
  • PDF下载量:  288
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-15
  • 修回日期:  2018-01-18
  • 刊出日期:  2018-04-01

目录

    /

    返回文章
    返回

    《航空材料学报》关于谨防假冒期刊的郑重声明

    近期,有不法分子冒充《航空材料学报》期刊及官网,谎称提供论文发表服务,发布虚假约稿信息,骗取作者发表费用,为此,本编辑部郑重声明如下:

    1、http://www.hkclxb.cn 为假冒网站,与《航空材料学报》没有任何关系。我刊没有委托任何第三方机构或个人,代表我刊约稿或提供发表服务。

    2、《航空材料学报》为中文期刊,只接收中文文章投稿,目前不刊登英文文章。

    3. 本刊官网是http://jam.biam.ac.cn/,本刊的官方投稿方式为网上投稿(登录官网首页—作者投稿)。如有不明可电话咨询,联系电话是010-62496277。

    敬请广大读者和作者认真识别,谨防上当受骗。