Research Process in Plasma Spray Physical Vapor Deposited Thermal Barrier Coatings
-
摘要: 等离子物理气相沉积(plasma spray-physical vapor deposition,PS-PVD)是一种最近发展的功能薄膜与涂层制备技术。该技术结合了等离子喷涂(PS)和物理气相沉积(PVD)两种技术的特点,可以实现气、液、固多相的快速共沉积,进行涂层/薄膜微结构的高度柔性加工,并可实现复杂工件遮蔽区域的非视线均匀沉积,在热障涂层、环境障涂层、超硬耐磨涂层、透氧膜和电极膜等领域具有广阔的应用前景,被认为代表了高性能热/环境障涂层制备技术的发展方向。本文综述了PS-PVD的工作原理、技术特点以及近年来国内外在PS-PVD热障涂层制备科学和沉积机理等方面的研究进展,展望了新型高性能热障涂层制备技术的研究热点及未来的发展方向。
-
关键词:
- 等离子物理气相沉积(PS-PVD) /
- 热障涂层 /
- 工艺 /
- 沉积机理
Abstract: Plasma spray physical vapor deposition (PS-PVD) is a newly developed processing technology for advanced functional coatings and films. PS-PVD is featured with the advantages of plasma spray (PS) and physical vapor deposition (PVD) and can be used for high efficient co-deposition of vapor phases, liquid droplets and solid particles, with the capability of highly flexibility in building up various microstructure architectures. Besides, uniform deposition of the coatings or films can be achieved by this technology even on the non-line-of-sight areas of those components with complex geometry. Owing to the above merits, PS-PVD shows very promising potential in the fields of thermal barrier coatings (TBCs), environmental barrier coatings (EBCs), super-hard and wear-resistant coatings or films, oxygen permeable membranes and electrode membranes. Further, PS-PVD is recognized as the processing technology for advanced TBCs in the future. In this paper, physical principles and recent research progress in preparation and deposition mechanisms of PS-PVD TBCs are briefly introduced and summarized. The future development trends of PS-PVD in new thermal barrier coatings are prospected.-
Key words:
- PS-PVD /
- thermal barrier coatings (TBCs) /
- processing /
- deposition mechanisms
-
表 1 相同净功率下不同气体组分的温度和焓值[18]
Table 1. Plasma temperatures and enthalpies of different plasma gas compositions at the same plasma net power[18]
Plasma gas flow/SLPM Molar flow /(mol·min–1) Net power/kW Enthalpy/(J·mol–1) Temperature/K 100Ar, 10H2 4908 60 733496 12860 35Ar, 60 He 4291 60 838965 15550 35Ar, 60 He, 10 H2 4685 60 768410 14240 Note:SLPM—standard liters per minute -
[1] MUEHLBERGER E. Method of forming uniform thin coatings on large substrates: US5853815[P]. 1998-12-29. [2] SOKOLOV D E, CHWA S O, KLEIN D, et al. Coatings obtained by low pressure plasma spraying[C]// Proceedings of the International Thermal Spray Conference. Washington, USA: ASM International, 2005. [3] NIESSEN K, GINDART M. Vapor phase deposition using a plasma spray process[C]//ASME Turbo Expo 2010. Glasgow, Scotland: AMER SOC Mechanical Engineers, 2010. [4] HE J, GUO H B, PENG H, et al. Microstructural, mechanical and oxidation features of NiCoCrAlY coating produced by plasma activated EB-PVD[J]. Applied Surface Science, 2013, 274: 144-150 doi: 10.1016/j.apsusc.2013.02.136 [5] WU J, GUO H B, ZHOU L, et al. Microstructure and thermal properties of plasma sprayed thermal barrier coatings from nanostructured YSZ[J]. Journal of Thermal Spray Technology, 2010, 19(6): 1186-1194 doi: 10.1007/s11666-010-9535-7 [6] RENTERIA A F, SARUHAN B, SCHULZ U, et al. Effect of morphology on thermal conductivity of EB-PVD PYSZ TBCs[J]. Surface and Coatings Technology, 2006, 201(6): 2611-2620 doi: 10.1016/j.surfcoat.2006.05.003 [7] VASSEN R, JARLIGO M O, STEINKE T, et al. Overview on advanced thermal barrier coatings[J]. Surface and Coatings Technology, 2010, 205(4): 938-942 doi: 10.1016/j.surfcoat.2010.08.151 [8] GORAL M, KOTOWSKI S, NOWOTNIK A, et al. PS-PVD deposition of thermal barrier coatings[J]. Surface and Coatings Technology, 2013, 237: 51-55 doi: 10.1016/j.surfcoat.2013.09.028 [9] ZHANG B P, WEI L L, GAO L H, et al. Microstructural characterization of PS-PVD ceramic thermal barrier coatings with quasi-columnar structures[J]. Surface and Coatings Technology, 2017, 311: 199-205 doi: 10.1016/j.surfcoat.2016.12.117 [10] MUMM D R, EVANS G A. Mechanisms controlling the performance and durability of thermal barrier coatings[J]. Durable Surfaces, 2001, 197: 199-230 [11] SCHULZ U, TERRY S G, LEVI C G. Microstructure and texture of EB-PVD TBCs grown under different rotation modes[J]. Materials Science and Engineering: A, 2003, 360(1/2): 319-329 [12] KULKARNI A A, GOLAND A, HERMAN H, et al. Microstructure-property correlations in industrial thermal barrier coatings[J]. Journal of the American Ceramic Society, 2004, 87(7): 1294-1300 doi: 10.1111/j.1151-2916.2004.tb07725.x [13] KUMAR V, KANDASUBRAMANIAN B. Processing and design methodologies for advanced and novel thermal barrier coatings for engineering applications[J]. Particuology, 2016, 27: 1-28 doi: 10.1016/j.partic.2016.01.007 [14] VON NIESSEN K, GINDRAT M. Plasma spray-PVD: a new thermal spray process to deposit out of the vapor phase[J]. Journal of Thermal Spray Technology, 2011, 20(4): 736-743 doi: 10.1007/s11666-011-9654-9 [15] 韩志海, 王海军, 白宇, 等. 喷涂粒子在等离子体射流中的加热历程及熔化状态研究[J]. 热喷涂技术, 2012, 4(2): 35-43 doi: 10.3969/j.issn.1674-7127.2012.02.009HAN Z H, WANG H J, BAI Y, et al. The study of heat process and molten state of sprayed particles in plasma jet[J]. Thermal Spray Technology, 2012, 4(2): 35-43.) doi: 10.3969/j.issn.1674-7127.2012.02.009 [16] REFKE A, HAWLEY D, DOESBURG J, et al. LPPS thin film technology for the application of TBC systems[C]// Proceedings of the International Thermal Spray Conference, Washington, USA: ASM International, 2005. [17] GAO L H, GUO H B, WEI L L, et al. Microstructure and mechanical properties of yttria stabilized zirconia coatings prepared by plasma spray physical vapor deposition[J]. Ceramics International, 2015, 41(7): 8305-8311 doi: 10.1016/j.ceramint.2015.02.141 [18] MAUER G, HOSPACH A, VASSEN R. Process development and coating characteristics of plasma spray-PVD[J]. Surface and Coatings Technology, 2013, 220: 219-224 doi: 10.1016/j.surfcoat.2012.08.067 [19] ANWAAR A, WEI L L, GUO H B, et al. Novel prospects for plasma spray-physical vapor deposition of columnar thermal barrier coatings[J]. Journal of Thermal Spray Technology, 2017, 26(8): 1810-1822 doi: 10.1007/s11666-017-0625-7 [20] ANWAAR A, WEI L L, GUO H B, et al. Plasma-powder feedstock interaction during plasma spray-physical vapor deposition[J]. Journal of Thermal Spray Technology, 2017, 26(3): 292-301 doi: 10.1007/s11666-016-0519-0 [21] HARDER B J, ZHU D. Plasma spray-physical vapor deposition (PS-PVD) of ceramics for protective coatings [M]//ZHU D, LIN H T, ZHOU Y, et al. Advanced Ceramic Coatings and Materials for Extreme Environments. Westerville: Amer Ceramic Soc. 2011: 73-84. [22] 高阳, 安连彤, 严志军, 等. 小功率等离子体射流的流特性[J]. 核聚变与等离子体物理, 2004, 2(1): 147-151GAO Y, AN L T, YAN Z J, et al. Flow characteristics of a low power plasma jet[J]. Nuclear Fusion and Plasma Physics, 2004, 2(1): 147-151.) [23] CIZEK J, KHOR K A, PROCHAZKA Z. Influence of spraying conditions on thermal and velocity properties of plasma sprayed hydroxyapatite[J]. Materials Science and Engineering C: Biomimetic and Supramolecular Systems, 2007, 27(2): 340-344 doi: 10.1016/j.msec.2006.05.002 [24] 杨德明. 低压等离子喷涂射流特性及金属基涂层组织性能研究 [D]. 大连: 大连海事大学, 2013.YANG D M. Characteristics of plasma jet and properties of metal-base coatings deposited by low pressure plasma spray [D]. Dalian: Dalian Maritime University, 2013. [25] VAUTHERIN B, PLANCHE M P, BOLOT R, et al. Vapors and droplets mixture deposition of metallic coatings by very low pressure plasma spraying[J]. Journal of Thermal Spray Technology, 2014, 23(4): 596-608 doi: 10.1007/s11666-014-0059-4 [26] LI C Y, GUO H B, GAO L H, et al. Microstructures of yttria-stabilized zirconia coatings by plasma spray-physical vapor deposition[J]. Journal of Thermal Spray Technology, 2014, 24(3): 534-541 [27] GAO L H, WEI L L, GUO H B, et al. Deposition mechanisms of yttria-stabilized zirconia coatings during plasma spray physical vapor deposition[J]. Ceramics International, 2016, 42(4): 5530-5536 doi: 10.1016/j.ceramint.2015.12.111 [28] ZHANG B P, WEI L L, GUO H B, et al. Microstructures and deposition mechanisms of quasi-columnar structured yttria-stabilized zirconia coatings by plasma spray physical vapor deposition[J]. Ceramics International, 2017, 43(15): 12920-12929 doi: 10.1016/j.ceramint.2017.06.190 -