等离子物理气相沉积热障涂层研究进展

石佳 魏亮亮 张宝鹏 高丽华 郭洪波 宫声凯 徐惠彬

石佳, 魏亮亮, 张宝鹏, 高丽华, 郭洪波, 宫声凯, 徐惠彬. 等离子物理气相沉积热障涂层研究进展[J]. 航空材料学报, 2018, 38(2): 1-9. doi: 10.11868/j.issn.1005-5053.2018.001008
引用本文: 石佳, 魏亮亮, 张宝鹏, 高丽华, 郭洪波, 宫声凯, 徐惠彬. 等离子物理气相沉积热障涂层研究进展[J]. 航空材料学报, 2018, 38(2): 1-9. doi: 10.11868/j.issn.1005-5053.2018.001008
Jia SHI, Liangliang WEI, Baopeng ZHANG, Lihua GAO, Hongbo GUO, Shengkai GONG, Huibin XU. Research Process in Plasma Spray Physical Vapor Deposited Thermal Barrier Coatings[J]. Journal of Aeronautical Materials, 2018, 38(2): 1-9. doi: 10.11868/j.issn.1005-5053.2018.001008
Citation: Jia SHI, Liangliang WEI, Baopeng ZHANG, Lihua GAO, Hongbo GUO, Shengkai GONG, Huibin XU. Research Process in Plasma Spray Physical Vapor Deposited Thermal Barrier Coatings[J]. Journal of Aeronautical Materials, 2018, 38(2): 1-9. doi: 10.11868/j.issn.1005-5053.2018.001008

等离子物理气相沉积热障涂层研究进展

doi: 10.11868/j.issn.1005-5053.2018.001008
基金项目: 国家自然基金(51590894, 51425102, 51231001)
详细信息
    通讯作者:

    郭洪波(1971—),男,博士,教授,主要从事高温防护涂层研究,(E-mail)guo.hongbo@buaa.edu.cn

  • 中图分类号: TG174.4

Research Process in Plasma Spray Physical Vapor Deposited Thermal Barrier Coatings

  • 摘要: 等离子物理气相沉积(plasma spray-physical vapor deposition,PS-PVD)是一种最近发展的功能薄膜与涂层制备技术。该技术结合了等离子喷涂(PS)和物理气相沉积(PVD)两种技术的特点,可以实现气、液、固多相的快速共沉积,进行涂层/薄膜微结构的高度柔性加工,并可实现复杂工件遮蔽区域的非视线均匀沉积,在热障涂层、环境障涂层、超硬耐磨涂层、透氧膜和电极膜等领域具有广阔的应用前景,被认为代表了高性能热/环境障涂层制备技术的发展方向。本文综述了PS-PVD的工作原理、技术特点以及近年来国内外在PS-PVD热障涂层制备科学和沉积机理等方面的研究进展,展望了新型高性能热障涂层制备技术的研究热点及未来的发展方向。

     

  • 图  1  PS-PVD设备示意图

    Figure  1.  Scheme of PS-PVD equipment

    图  2  三种工艺的等离子射流比较[14]

    Figure  2.  Comparison of plasma plume in three different processes[14] (a)APS;(b)LPPS;(c)PS-PVD

    图  3  不同组分工作气体下的PS-PVD等离子射流状态[18] (a)无粉末注入;(b)有YSZ粉末注入

    Figure  3.  Photographs of PS-PVD plasma plume using different gas compositions[18] (a)without any powder;(b)with YSZ powder injected

    图  4  不同工作气体比例下PS-PVD热障涂层截面形貌[8] (a)Ar/He 1∶1;(b)Ar/He 2∶1

    Figure  4.  Microstructures of PS-PVD thermal barrier coatings with different plasma gas Ar/He ratio[8] (a)1∶1;(b)2∶1

    图  5  不同等离子气体组成下喷枪内YSZ获得的净焓值[19]

    Figure  5.  Calculated results of net enthalpy transferred by plasma gas Ar/He of different ratios to representative YSZ particle inside nozzle[19]

    图  6  不同功率下可完全气化的粉末颗粒尺寸[20]

    Figure  6.  Predicted evaporated feedstock particle size[20]

    图  7  不同真空度下PS-PVD热障涂层结构[21]

    Figure  7.  Microstructures of PS-PVD thermal barrier coatings under different work chamber pressures[21] (a)5000 Pa;(b)> 500 Pa;(c)< 300 Pa;(d)< 1 Pa

    图  8  喷涂粉末吸收的有效功率[20]

    Figure  8.  Effective power utilized by powder feedstock[20]

    图  9  喷涂过程中YSZ喷涂粉末的飞行轨迹模型[9]

    Figure  9.  Flight model of YSZ powder during spraying[9]

    图  10  YSZ不同结构涂层形貌[27] (a)致密结构;(b)混合结构;(c)准柱状结构;(d)纯柱状结构

    Figure  10.  Cross-section morphologies of YSZ coatings with different structures[27] (a)lamellar structure;(b)hybrid structure;(c)quasi-columnar structure;(d)columnar structure

    图  11  喷涂粉末熔化气化示意图及液相沉积为主时的层状结构涂层生长模型[27]

    Figure  11.  Growth model of dense microstructure deposited mainly from liquid droplets[27]

    图  12  气/液混合沉积时混合结构涂层生长模型[27] (a)初期;(b)涂层生长;(c)完整涂层

    Figure  12.  Growth model of hybrid coating deposited from vapor phase and liquid droplets[27] (a)initial stage;(b)growth stage;(c)complete coating

    图  13  PS-PVD准柱状涂层的沉积模型[28]

    Figure  13.  Deposition model of quasi-columnar coating in PS-PVD[28]

    图  14  单一纯气相沉积柱状晶结构涂层生长模型[27] (a)气相原子吸附;(b)形核过程;(c)稳定岛状结构;(d)早期柱状晶;(e)柱状晶生长;(f)完整涂层

    Figure  14.  Growth model of columnar coating deposited from pure vapor phase[27] (a)absorption;(b)nucleation;(c)stable islands;(d)early columnar;(e)growth of column; (f) complete coating

    表  1  相同净功率下不同气体组分的温度和焓值[18]

    Table  1.   Plasma temperatures and enthalpies of different plasma gas compositions at the same plasma net power[18]

    Plasma gas flow/SLPM Molar flow /(mol·min–1 Net power/kW Enthalpy/(J·mol–1 Temperature/K
    100Ar, 10H2 4908 60 733496 12860
    35Ar, 60 He 4291 60 838965 15550
    35Ar, 60 He, 10 H2 4685 60 768410 14240
    Note:SLPM—standard liters per minute
    下载: 导出CSV
  • [1] MUEHLBERGER E. Method of forming uniform thin coatings on large substrates: US5853815[P]. 1998-12-29.
    [2] SOKOLOV D E, CHWA S O, KLEIN D, et al. Coatings obtained by low pressure plasma spraying[C]// Proceedings of the International Thermal Spray Conference. Washington, USA: ASM International, 2005.
    [3] NIESSEN K, GINDART M. Vapor phase deposition using a plasma spray process[C]//ASME Turbo Expo 2010. Glasgow, Scotland: AMER SOC Mechanical Engineers, 2010.
    [4] HE J, GUO H B, PENG H, et al. Microstructural, mechanical and oxidation features of NiCoCrAlY coating produced by plasma activated EB-PVD[J]. Applied Surface Science, 2013, 274: 144-150 doi: 10.1016/j.apsusc.2013.02.136
    [5] WU J, GUO H B, ZHOU L, et al. Microstructure and thermal properties of plasma sprayed thermal barrier coatings from nanostructured YSZ[J]. Journal of Thermal Spray Technology, 2010, 19(6): 1186-1194 doi: 10.1007/s11666-010-9535-7
    [6] RENTERIA A F, SARUHAN B, SCHULZ U, et al. Effect of morphology on thermal conductivity of EB-PVD PYSZ TBCs[J]. Surface and Coatings Technology, 2006, 201(6): 2611-2620 doi: 10.1016/j.surfcoat.2006.05.003
    [7] VASSEN R, JARLIGO M O, STEINKE T, et al. Overview on advanced thermal barrier coatings[J]. Surface and Coatings Technology, 2010, 205(4): 938-942 doi: 10.1016/j.surfcoat.2010.08.151
    [8] GORAL M, KOTOWSKI S, NOWOTNIK A, et al. PS-PVD deposition of thermal barrier coatings[J]. Surface and Coatings Technology, 2013, 237: 51-55 doi: 10.1016/j.surfcoat.2013.09.028
    [9] ZHANG B P, WEI L L, GAO L H, et al. Microstructural characterization of PS-PVD ceramic thermal barrier coatings with quasi-columnar structures[J]. Surface and Coatings Technology, 2017, 311: 199-205 doi: 10.1016/j.surfcoat.2016.12.117
    [10] MUMM D R, EVANS G A. Mechanisms controlling the performance and durability of thermal barrier coatings[J]. Durable Surfaces, 2001, 197: 199-230
    [11] SCHULZ U, TERRY S G, LEVI C G. Microstructure and texture of EB-PVD TBCs grown under different rotation modes[J]. Materials Science and Engineering: A, 2003, 360(1/2): 319-329
    [12] KULKARNI A A, GOLAND A, HERMAN H, et al. Microstructure-property correlations in industrial thermal barrier coatings[J]. Journal of the American Ceramic Society, 2004, 87(7): 1294-1300 doi: 10.1111/j.1151-2916.2004.tb07725.x
    [13] KUMAR V, KANDASUBRAMANIAN B. Processing and design methodologies for advanced and novel thermal barrier coatings for engineering applications[J]. Particuology, 2016, 27: 1-28 doi: 10.1016/j.partic.2016.01.007
    [14] VON NIESSEN K, GINDRAT M. Plasma spray-PVD: a new thermal spray process to deposit out of the vapor phase[J]. Journal of Thermal Spray Technology, 2011, 20(4): 736-743 doi: 10.1007/s11666-011-9654-9
    [15] 韩志海, 王海军, 白宇, 等. 喷涂粒子在等离子体射流中的加热历程及熔化状态研究[J]. 热喷涂技术, 2012, 4(2): 35-43 doi: 10.3969/j.issn.1674-7127.2012.02.009

    HAN Z H, WANG H J, BAI Y, et al. The study of heat process and molten state of sprayed particles in plasma jet[J]. Thermal Spray Technology, 2012, 4(2): 35-43.) doi: 10.3969/j.issn.1674-7127.2012.02.009
    [16] REFKE A, HAWLEY D, DOESBURG J, et al. LPPS thin film technology for the application of TBC systems[C]// Proceedings of the International Thermal Spray Conference, Washington, USA: ASM International, 2005.
    [17] GAO L H, GUO H B, WEI L L, et al. Microstructure and mechanical properties of yttria stabilized zirconia coatings prepared by plasma spray physical vapor deposition[J]. Ceramics International, 2015, 41(7): 8305-8311 doi: 10.1016/j.ceramint.2015.02.141
    [18] MAUER G, HOSPACH A, VASSEN R. Process development and coating characteristics of plasma spray-PVD[J]. Surface and Coatings Technology, 2013, 220: 219-224 doi: 10.1016/j.surfcoat.2012.08.067
    [19] ANWAAR A, WEI L L, GUO H B, et al. Novel prospects for plasma spray-physical vapor deposition of columnar thermal barrier coatings[J]. Journal of Thermal Spray Technology, 2017, 26(8): 1810-1822 doi: 10.1007/s11666-017-0625-7
    [20] ANWAAR A, WEI L L, GUO H B, et al. Plasma-powder feedstock interaction during plasma spray-physical vapor deposition[J]. Journal of Thermal Spray Technology, 2017, 26(3): 292-301 doi: 10.1007/s11666-016-0519-0
    [21] HARDER B J, ZHU D. Plasma spray-physical vapor deposition (PS-PVD) of ceramics for protective coatings [M]//ZHU D, LIN H T, ZHOU Y, et al. Advanced Ceramic Coatings and Materials for Extreme Environments. Westerville: Amer Ceramic Soc. 2011: 73-84.
    [22] 高阳, 安连彤, 严志军, 等. 小功率等离子体射流的流特性[J]. 核聚变与等离子体物理, 2004, 2(1): 147-151

    GAO Y, AN L T, YAN Z J, et al. Flow characteristics of a low power plasma jet[J]. Nuclear Fusion and Plasma Physics, 2004, 2(1): 147-151.)
    [23] CIZEK J, KHOR K A, PROCHAZKA Z. Influence of spraying conditions on thermal and velocity properties of plasma sprayed hydroxyapatite[J]. Materials Science and Engineering C: Biomimetic and Supramolecular Systems, 2007, 27(2): 340-344 doi: 10.1016/j.msec.2006.05.002
    [24] 杨德明. 低压等离子喷涂射流特性及金属基涂层组织性能研究 [D]. 大连: 大连海事大学, 2013.

    YANG D M. Characteristics of plasma jet and properties of metal-base coatings deposited by low pressure plasma spray [D]. Dalian: Dalian Maritime University, 2013.
    [25] VAUTHERIN B, PLANCHE M P, BOLOT R, et al. Vapors and droplets mixture deposition of metallic coatings by very low pressure plasma spraying[J]. Journal of Thermal Spray Technology, 2014, 23(4): 596-608 doi: 10.1007/s11666-014-0059-4
    [26] LI C Y, GUO H B, GAO L H, et al. Microstructures of yttria-stabilized zirconia coatings by plasma spray-physical vapor deposition[J]. Journal of Thermal Spray Technology, 2014, 24(3): 534-541
    [27] GAO L H, WEI L L, GUO H B, et al. Deposition mechanisms of yttria-stabilized zirconia coatings during plasma spray physical vapor deposition[J]. Ceramics International, 2016, 42(4): 5530-5536 doi: 10.1016/j.ceramint.2015.12.111
    [28] ZHANG B P, WEI L L, GUO H B, et al. Microstructures and deposition mechanisms of quasi-columnar structured yttria-stabilized zirconia coatings by plasma spray physical vapor deposition[J]. Ceramics International, 2017, 43(15): 12920-12929 doi: 10.1016/j.ceramint.2017.06.190
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  9177
  • HTML全文浏览量:  3353
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-10
  • 修回日期:  2018-02-10
  • 刊出日期:  2018-04-01

目录

    /

    返回文章
    返回