增材制造超材料及其隐身功能调控的研究进展

张磊 卓林蓉 汤桂平 宋波 史玉升

张磊, 卓林蓉, 汤桂平, 宋波, 史玉升. 增材制造超材料及其隐身功能调控的研究进展[J]. 航空材料学报, 2018, 38(3): 10-19. doi: 10.11868/j.issn.1005-5053.2018.001009
引用本文: 张磊, 卓林蓉, 汤桂平, 宋波, 史玉升. 增材制造超材料及其隐身功能调控的研究进展[J]. 航空材料学报, 2018, 38(3): 10-19. doi: 10.11868/j.issn.1005-5053.2018.001009
Lei ZHANG, Linrong ZHUO, Guiping TANG, Bo SONG, Yusheng SHI. Additive Manufacture of Metamaterials: a Review[J]. Journal of Aeronautical Materials, 2018, 38(3): 10-19. doi: 10.11868/j.issn.1005-5053.2018.001009
Citation: Lei ZHANG, Linrong ZHUO, Guiping TANG, Bo SONG, Yusheng SHI. Additive Manufacture of Metamaterials: a Review[J]. Journal of Aeronautical Materials, 2018, 38(3): 10-19. doi: 10.11868/j.issn.1005-5053.2018.001009

增材制造超材料及其隐身功能调控的研究进展

doi: 10.11868/j.issn.1005-5053.2018.001009
基金项目: 国家自然科学基金面上项目(51775208)
详细信息
    通讯作者:

    宋波(1984—),男,博士,副教授,主要从事增材制造(3D打印)技术方面的研究,(E-mail)songbo42002@163.com

  • 中图分类号: TB535

Additive Manufacture of Metamaterials: a Review

  • 摘要: 超材料作为一种新型拓扑优化设计的结构材料,展现出特殊的物理性质,比如负泊松比、负折射率等,在波动控制和隐身方面有重要的潜在应用价值,因此受到国内外的广泛关注。增材制造技术,又称为3D打印技术,适合于制造复杂形状的结构,利用增材制造技术制造隐身超材料具有较高的几何自由度和尺寸精度,为超材料的广泛应用提供技术条件。本文基于超材料的基本概念,对隐身超材料结构设计、功能调控的研究进展进行详细介绍,进一步介绍增材制造隐身超材料的光固化法、熔融沉积法、激光选区烧结/熔化法等工艺方法,并讨论了增材制造超材料在制造过程中存在的阶梯效应、原材料黏附现象、热扩散现象、尺寸精度、粗糙度等问题。

     

  • 图  1  完美吸波体[8] (a)上层电谐振环;(b)底部金属短线;(c)整体单元结构

    Figure  1.  Perfect metamaterial absorber[8] (a)upper electric ring resonator (ERR);(b)substrate cutwire;(c)unitcell

    图  2  宽频吸波体[9] (a)示意图;(b)单元结构

    Figure  2.  Broadband absorber[9] (a)schematic diagram;(b)a unit cell

    图  3  东南大学制造的电磁黑洞结构[14] (a)全方位电磁吸波体模型;(b)超材料制备的全方位吸波装置

    Figure  3.  Electromagnetic(EM)omnidirectional absorber fabricated by Southeast University[14] (a)model of an electromagnetic omnidirectional absorber;(b)fabricated artificial omnidirectional absorbing devicebased on metamaterials

    图  4  西安交通大学制造的电磁黑洞结构[15] (a)电磁黑洞内核;(b)电磁黑洞外壳

    Figure  4.  EM wave concentrator fabricated by Xi’an Jiaotong University[15] (a)inner core of EM wave concentrator;(b)outer shell of EM wave concentrator

    图  5  首次实现的完美隐身罩[18]

    Figure  5.  First realization of perfect electromagnetic cloak[18]

    图  6  西安交通大学制造的隐身地毯[20]

    Figure  6.  Carpet cloak fabricated by Xi’an Jiaotong University[20]

    图  7  五模材料的单元结构及其特征参数[23] (a)Milton和Cherkaev提出的五模隐身超材料微结构单胞;(b)常见材料的体积模量、剪切模量的取值空间

    Figure  7.  Unit cell of pentamode material and its characteristic parameters[23] (a)unit cell of pentamode stealth metamaterial proposed by Milton and Cherkaev;(b)value space of bulk modulus and shear modulus of common materials

    图  8  激光直写技术制备的五模隐身超材料[32]

    Figure  8.  Pentamode stealth metamaterial fabricated by direct laser writing[32]

    图  9  五模隐身材料的试件及声场模拟结果[43-44] (a)五模隐身超材料三维模型;(b)制备的五模隐身材料试件;(c)实体块体的声场云图;(d)五模隐身材料的声场云图

    Figure  9.  Specimens made of pentamode stealth metamaterial and simulation results of sound field[43-44] (a)3D model of pentamode stealth metamaterial;(b)specimens of pentamode stealth metamaterial;(c)sound field distribution of solid block;(d)sound field distribution of pentamode stealth metamaterial

    图  10  机械磨削加工制备的微波段宽频吸波器[49]

    Figure  10.  Broadband microwave metamaterial absorber fabricated by mechanical milling method[49]

    图  11  激光选区烧结制备的吸波超材料[53]

    Figure  11.  Radar absorbing metamaterial fabricated by selectivelaser sintering[53]

    图  12  台阶效应示意图 (a)圆柱杆高倍SEM图像;(b)选择性激光熔化制造圆柱杆示意图[55]

    Figure  12.  Schematic of staircase-shaped profile (a)high magnification SEM image of cylindricalstrut;(b)schematic of cylindrical strut fabricated by selective laser melting

    图  13  激光选区熔化加工过程及热扩散示意图[57-59]

    Figure  13.  Schematic diagram of selective laser melting process and its thermal diffusion[57-59]

  • [1] KARPOVE G. Structural metamaterials with Saint-Venant edge effect reversal[J]. Acta Materialia, 2017, 123: 245-254 doi: 10.1016/j.actamat.2016.10.046
    [2] MOITRA P, YANG Y, ANDERSON Z, et al. Realization of an all-dielectric zero-index optical metamaterial[J]. Nature Photonics, 2013, 7(10): 791-795 doi: 10.1038/nphoton.2013.214
    [3] LIU C, YANG B, JING L, et al. Equivalent energy level hybridization approach for high-performance metamaterials design[J]. Acta Materialia, 2017, 135: 144-149 doi: 10.1016/j.actamat.2017.06.032
    [4] ZHAO Y, SHI J, SUN L, et al. Alignment-free three-dimensional optical metamaterials[J]. Advanced Materials, 2014, 26(9): 1439 doi: 10.1002/adma.201304379
    [5] 礼嵩明, 蒋诗才, 望咏林, 等. " 超材料”结构吸波复合材料技术研究[J]. 材料工程, 2017, 45(11): 10-14 doi: 10.11868/j.issn.1001-4381.2016.000152

    LI S M, JIANG S C, WANG Y L, et al. Study on " metamaterial” structural absorbing composite technology[J]. Journal of Materials Engineering, 2017, 45(11): 10-14.) doi: 10.11868/j.issn.1001-4381.2016.000152
    [6] 于相龙, 周济. 智能超材料研究与进展[J]. 材料工程, 2016, 44(7): 119-128

    YU X L, ZHOU J. Research advance in smart metamaterials[J]. Journal of Materials Engineering, 2016, 44(7): 119-128.)
    [7] 张勇, 张斌珍, 段俊萍, 等. 超材料在完美吸波器中的应用[J]. 材料工程, 2016, 44(11): 120-128 doi: 10.11868/j.issn.1001-4381.2016.11.020

    ZHANG Y, ZHANG B Z, DUAN J P, et al. Application of metamaterial in perfect absorber[J]. Journal of Materials Engineering, 2016, 44(11): 120-128.) doi: 10.11868/j.issn.1001-4381.2016.11.020
    [8] LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402 doi: 10.1103/PhysRevLett.100.207402
    [9] TANG B, ZHU Y, ZHOU X, et al. Wide-angle polarization-independent broadband absorbers based on concentric multi-split ring arrays[J]. IEEE Photonics Journal, 2017, PP(99): 1-1
    [10] WANG B X, WANG L L, WANG G Z, et al. Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber[J]. IEEE Photonics Technology Letters, 2014, 26(2): 111-114 doi: 10.1109/LPT.2013.2289299
    [11] CHAURASIYA D, GHOSH S, BHATTACHARYYA S, et al. Compact multi-band polarisation-insensitive metamaterial absorber[J]. Iet Microwaves Antennas & Propagation, 2016, 10(1): 94-101
    [12] LANDY N I, BINGHAM C M, TYLER T, et al. Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging[J]. Physical Review B: Condensed Matter & Materials Physics, 2009, 79(12): 13
    [13] 田小永, 尹丽仙, 李涤尘. 三维超材料制造技术现状与趋势[J]. 光电工程, 2017, 44(1): 69-76 doi: 10.3969/j.issn.1003-501X.2017.01.006

    TIAN X Y, YIN L X, LI D C. Current situation and trend of fabrication technologies for three-dimensional metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 69-76.) doi: 10.3969/j.issn.1003-501X.2017.01.006
    [14] CHENG Q, CUI T J, JIANG W X, et al. An omnidirectional electromagnetic absorber made of metamaterials[J]. New Journal of Physics, 2010, 12(6): 063006. 11
    [15] YIN M, TIAN X Y, WU L L, et al. A broadband and omnidirectional electromagnetic wave concentrator with gradient woodpile structure[J]. Optics Express, 2013, 21(16): 19082-90. 16 doi: 10.1364/OE.21.019082
    [16] PENDRY J B, SCHURIG D, SMITH D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780 doi: 10.1126/science.1125907
    [17] LEONHARDT U. Optical conformal mapping[J]. Science, 2006, 312(5781): 1777 doi: 10.1126/science.1126493
    [18] SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-80 doi: 10.1126/science.1133628
    [19] LI J, PENDRY J B. Hiding under the carpet: a new strategy for cloaking[J]. Physical Review Letters, 2008, 101(20): 203901 doi: 10.1103/PhysRevLett.101.203901
    [20] YIN M, TIAN X Y, HAN H X, et al. Free-space carpet-cloak based on gradient index photonic crystals in metamaterial regime[J]. Applied Physics Letters, 2012, 100(12): 1780
    [21] MA H F, CUI T J. Three-dimensional broadband ground-plane cloak made of metamaterials[J]. Nature Communications, 2010, 1(3): 21
    [22] LIU R, JI C, MOCK J J, et al. Broadband ground-plane cloak[J]. Science, 2009, 323(5912): 366 doi: 10.1126/science.1166949
    [23] MILTON G W, CHERKAEV A V. Which elasticity tensors are realizable?[J]. Journal of Engineering Materials & Technology, 1995, 117(4): 483-493
    [24] BUCKMANN T, THIEL M, KADIC M, et al. An elasto-mechanical unfeelability cloak made of pentamode metamaterials[J]. Nature Communications, 2014, 5(5): 4130
    [25] SCANDRETT C L, BOISVERT J E, HOWARTH T R. Acoustic cloaking using layered pentamode materials[J]. Journal of the Acoustical Society of America, 2010, 127(5): 2856 doi: 10.1121/1.3365248
    [26] NORRIS A N, NAGY A J. Acoustic metafluids made from three acoustic fluids[J]. Journal of the Acoustical Society of America, 2010, 128(4): 1606 doi: 10.1121/1.3479022
    [27] GOKHALE N H, CIPOLLA J L, NORRIS A N. Special transformations for pentamode acoustic cloaking[J]. Journal of the Acoustical Society of America, 2012, 132(4): 2932-2941 doi: 10.1121/1.4744938
    [28] NORRIS A N. Acoustic cloaking theory[J]. Proceedings Mathematical Physical & Engineering Sciences, 2008, 464(2097): 2411-2434
    [29] NORRIS A N. Acoustic metafluids[J]. Journal of the Acoustical Society of America, 2009, 125(2): 839 doi: 10.1121/1.3050288
    [30] TIAN Y, WEI Q, CHENG Y, et al. Broadband manipulation of acoustic wavefronts by pentamode metasurface[J]. Applied Physics Letters, 2015, 107(22): 333-113
    [31] BUCKMANN T, STENGER N, KADIC M, et al. Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography[J]. Advanced Materials, 2012, 24(20): 2710 doi: 10.1002/adma.v24.20
    [32] KADIC M, BUCKMANN T, STENGER N. On the practicability of pentamode mechanical metamaterials[J]. Applied Physics Letters, 2012, 100(19): 1780
    [33] MARTIN A, KADIC M, SCHITTNY R, et al. Phonon band structures of three-dimensional pentamode metamaterials[J]. Physical Review B:Condensed Matter, 2012, 86(15): 4172-4181
    [34] KADIC M, BUCKMANN T, SCHITTNY R, et al. On anisotropic versions of three-dimensional pentamode metamaterials[J]. New Journal of Physics, 2013, 15(2): 023029 doi: 10.1088/1367-2630/15/2/023029
    [35] BUCKMANN T, SCHITTNY R, THIEL M, et al. On three-dimensional dilational elastic metamaterials[J]. Physics, 2014, 16(3): 033032
    [36] BUCKMANN T, THIEL M, KADIC M, et al. An elasto-mechanical unfeelability cloak made of pentamode metamaterials[J]. Nature Communications, 2014, 5(5): 4130
    [37] KADIC M, BUCKMANN T, SCHITTNY R, et al. Metamaterials beyond electromagnetism[J]. Reports on Progress in Physics Physical Society, 2013, 76(12): 126501 doi: 10.1088/0034-4885/76/12/126501
    [38] MEJICA G F, LANTADA A D. Comparative study of potential pentamodal metamaterials inspired by Bravais lattices[J]. Smart Materials & Structures, 2013, 22(11): 1500-1503
    [39] SCHITTNY R, BUCKMANN T, KADIC M, et al. Elastic measurements on macroscopic three-dimensional pentamode metamaterials[J]. Applied Physics Letters, 2013, 103(23): 483
    [40] SCANDRETT C L, BOISVERT J E, HOWARTH T R. Broadband optimization of a pentamode-layered spherical acoustic waveguide[J]. Wave Motion, 2011, 48(6): 505-514 doi: 10.1016/j.wavemoti.2011.02.007
    [41] 张向东, 陈虹, 王磊, 等. 圆柱形分层五模材料声学隐身衣的理论与数值分析[J]. 物理学报, 2015, 64(13): 198-205

    ZHANG X D, CHEN H, WANG L, et al. Theoretical and numerical analysis of layered cylindricalpentamode acoustic cloak[J]. Acta Physica Sinica, 2015, 64(13): 198-205.)
    [42] LAYMAN C N, NAIFY C J, MARTIN T P, et al. Highly anisotropic elements for acoustic pentamode applications[J]. Physical Review Letters, 2013, 111(2): 024302 doi: 10.1103/PhysRevLett.111.024302
    [43] ZHAO A, ZHAO Z, ZHANG X, et al. Design and experimental verification of a water-like pentamode material[J]. Applied Physics Letters, 2017, 110(1): 011907 doi: 10.1063/1.4973924
    [44] CAI X, WANG L, ZHAO Z, et al. The mechanical and acoustic properties of two-dimensional pentamode metamaterials with different structural parameters[J]. Applied Physics Letters, 2016, 109(13): 791-113
    [45] HEDAYATI R, LEEFLANG A M, ZADPOOR A A. Additively manufactured metallic pentamode meta-materials[J]. Applied Physics Letters, 2017, 110(9): 4782-4810
    [46] 梅中磊, 张黎, 崔铁军. 电磁超材料研究进展[J]. 科技导报, 2016, 34(18): 27-39

    MEI Z L, ZHANG L, CUI T J. Recent advances on metamaterials[J]. Science & Technology Review, 2016, 34(18): 27-39.)
    [47] TORRENT D, SCANCHEZ-DEHESA J. Acoustic cloaking in two dimensions: a feasible approach[J]. New Journal of Physics, 2008, 10(6): 063015 doi: 10.1088/1367-2630/10/6/063015
    [48] NORRIS A N. Acoustic metafluid[J]. Journal of the Acoustical Society of America, 2008, 125(2): 839
    [49] DING F, CUI Y X, GE X C, et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters, 2012, 100(10): 103506-4 doi: 10.1063/1.3692178
    [50] XIAO Q J, WANG L, WU T, et al. Research on layered design of ring-shaped acoustic cloaking using bimode metamaterial[J]. Applied Mechanics and Materials, 2014, 687-691: 4399-4404 doi: 10.4028/www.scientific.net/AMM.687-691
    [51] ZHOU F, BAO Y, CAO W, et al. Hiding a realistic object using a broadband terahertz invisibility cloak[J]. Scientific Reports, 2011, 1(4): 78
    [52] URZHUMOV Y, LANDY N, DRISCOLL T, et al. Thin low-loss dielectric coatings for free-space cloaking[J]. Optics Letters, 2013, 38(10): 1606-8 doi: 10.1364/OL.38.001606
    [53] ZHOU D, HUANG X, DU Z. Analysis and design of multilayered broadband radar absorbing metamaterial using the 3-D printing technology-based method[J]. IEEE Antennas & Wireless Propagation Letters, 2017, 16: 133-136
    [54] AHN D, KIM H, LEE S. Surface roughness prediction using measured data and interpolation in layered manufacturing[J]. Journal of Materials Processing Technology, 2009, 209(2): 664-671 doi: 10.1016/j.jmatprotec.2008.02.050
    [55] YAN C, HAO L, HUSSEIN A, et al. Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting[J]. Materials & Design, 2014, 55(6): 533-541
    [56] FORMANOIR C D, SUARD M, DENDIEVEL R, et al. Improving the mechanical efficiency of electron beam melted titanium lattice structures by chemical etching[J]. Additive Manufacturing, 2016, 11: 71-76 doi: 10.1016/j.addma.2016.05.001
    [57] 刘彦涛, 张永忠, 陈以强, 等. 激光熔化沉积TA15+Ti2AlNb合金的组织与力学性能[J]. 航空材料学报, 2017, 37(3): 61-67

    LIU Y T, ZHANG Y Z, CHEN Y Q, et al. Microstructure and mechanical properties of laser melting deposited TA15+Ti2AlNb alloys[J]. Journal of Aeronautical Materials, 2017, 37(3): 61-67.)
    [58] YAN C, HAO L, HUSSEIN A, et al. Evaluations of cellular lattice structures manufactured using selective laser melting[J[J]. International Journal of Machine Tools & Manufacture, 2012, 62(1): 32-38
    [59] 刘锦辉, 刘邦涛, 谢雪冬, 等. 高功率光纤激光熔化成形IN718的工艺及性能[J]. 航空材料学报, 2015, 35(4): 1-7

    LIU J H, LIU B T, XIE X D, et al. Process and properties of IN718 formed by high-power fiber laser melting[J]. Journal of Aeronautical Materials, 2015, 35(4): 1-7.)
    [60] 闫春洋, 王琳, 王东源, 等. 激光熔覆制备TC4基复合药型罩材料的力学性能[J]. 航空材料学报, 2017, 37(3): 68-72

    YAN C Y, WANG L, WANG D Y, et al. Mechanical properties of TC4 matrix composites prepared by laser cladding[J]. Journal of Aeronautical Materials, 2017, 37(3): 68-72.)
    [61] BAEL S V, KERCKHOFS G, MOESEN M, et al. Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures[J]. Materials Science & Engineering: A, 2011, 528(24): 7423-7431
  • 加载中
图(13)
计量
  • 文章访问数:  8063
  • HTML全文浏览量:  3313
  • PDF下载量:  204
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-04
  • 修回日期:  2018-04-12
  • 网络出版日期:  2018-04-24
  • 刊出日期:  2018-06-01

目录

    /

    返回文章
    返回