Preparation and corrosion resistance of titanium-containing coating on AZ31B magnesium alloy
-
摘要: 含钛氧化膜因具有自封孔现象而引起关注。采用四因素三水平正交实验,研究氟钛酸钾(K2TiF6)、植酸(H12Phy)和氟化钠(NaF)浓度以及终电压对氧化膜耐蚀性影响,使用扫描电子显微镜(SEM)、X射线能谱仪(EDS)、X射线衍射(XRD)和电化学方法表征涂层性能。结果表明:影响氧化膜耐蚀性的主次顺序是植酸浓度 > NaF浓度 > 终电压 > K2TiF6浓度;氧化膜主要由TiO2、MgF2、Mg2PO4F和Mg2TiO4组成;微弧氧化膜可明显提高镁合金的耐蚀性,但随着浸泡时间延长,膜层耐蚀性降低。Abstract: The titanium-containing oxide film has attracted attention due to the phenomenon of self-sealing pores. The influences of fluorotitanate (K2TiF6), phytic acid (H12Phy) and sodium fluoride(NaF) concentrations as well as final voltage on corrosion resistance of oxide film were investigated by an orthogonal experiment with four factors and three levels. The coating performances were characterized by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and electrochemical methods. The results show that the sequence of processing factors on the corrosion resistance of oxide film is H12Phy concentration > NaF concentration > final voltage > K2TiF6 concentration. Anodic coatings are mainly composed of TiO2, MgF2, Mg2PO4F and Mg2TiO4. Micro-arc oxidation (MAO) coating can significantly improve the corrosion resistance of magnesium alloy. However, with the prolonging of immersion time, the coating corrosion resistance decreases.
-
Key words:
- Mg alloy /
- MAO /
- K2TiF6 /
- corrosion resistance /
- orthogonal experiment
-
表 1 正交实验表和实验结果
Table 1. Orthogonal experimental array and experimental results
Experiment No. K2TiF6 concentration/(g·L–1) H12Phy concentration/(g·L–1) NaF concentration/(g·L–1) Final
voltage/Vicorr/
(10–8A·cm–2)No.1 5.00 8.00 6.00 300 7.50 No.2 5.00 12.00 9.00 350 4.81 No.3 5.00 16.00 12.00 400 17.00 No.4 10.00 8.00 9.00 400 2.31 No.5 10.00 12.00 12.00 300 1.51 No.6 10.00 16.00 6.00 350 47.30 No.7 15.00 8.00 12.00 350 6.54 No.8 15.00 12.00 6.00 400 5.35 No.9 15.00 16.00 9.00 300 12.40 K1 29.31 16.35 60.15 91.41 K2 51.12 11.67 19.52 58.65 K3 24.29 76.70 25.05 24.66 Difference 26.83 65.03 40.63 37.24 R 4 1 2 3 表 2 9个工艺制备的氧化膜化学成分(原子分数/%)
Table 2. Chemical compositions of anodic coatings fabricated by nine processes(atom fraction/%)
Sample C O F Mg P Ti No.1 8.51 ± 0.22 11.91 ± 1.50 55.00 ± 2.95 20.84 ± 0.16 2.17 ± 0.03 1.57 ± 0.08 No.2 9.35 ± 0.55 28.86 ± 1.16 34.13 ± 3.33 19.62 ± 0.07 5.32 ± 0.01 2.71 ± 0.01 No.3 6.12 ± 0.49 19.80 ± 2.78 47.89 ± 2.86 19.44 ± 0.10 2.71 ± 0.03 4.04 ± 0.21 No.4 6.09 ± 1.63 21.41 ± 1.30 45.6 ± 0.91 20.18 ± 0.71 2.78 ± 0.01 3.90 ± 0.03 No.5 7.81 ± 0.97 21.24 ± 0.75 43.95 ± 2.09 19.80 ± 0.35 3.52 ± 0.10 3.28 ± 0.01 No.6 7.52 ± 0.11 23.57 ± 1.90 41.96 ± 1.76 18.45 ± 0.21 4.17 ± 0.07 4.33 ± 0.19 No.7 6.35 ± 1.0 18.04 ± 1.14 47.78 ± 0.04 20.76 ± 0.32 2.44 ± 0.03 4.14 ± 0.02 No.8 8.43 ± 0.42 21.52 ± 3.07 42.11 ± 2.37 20.44 ± 0.04 4.63 ± 0.15 1.74 ± 0.01 No.9 6.80 ± 0.19 9.87 ± 1.30 57.19 ± 0.81 22.43 ± 0.34 1.89 ± 0.04 1.82 ± 0.05 表 3 9个工艺制备的氧化膜电化学参数
Table 3. Electrochemical parameters of anodic coatings fabricated by nine processes
Experiment No. βa/mV βc/mV icorr/(A·cm–2) Ecorr /V Rp/Ω Substrate 75.7 155.8 1.23 × 10–5 –1.55 1.80 × 106 No.1 220.2 277.2 7.50 × 10–8 –1.46 7.11 × 108 No.2 63.0 204.4 4.81 × 10–8 –1.44 4.35 × 108 No.3 51.5 222.3 1.70 × 10–7 –1.40 1.07 × 108 No.4 104.5 370.9 2.31 × 10–8 –1.43 1.53 × 109 No.5 105.3 193.6 1.51 × 10–8 –1.52 1.96 × 109 No.6 92.5 230.1 4.70 × 10–7 –1.44 6.10 × 107 No.7 117.3 222.1 6.54 × 10–8 –1.46 5.10 × 108 No.8 169.2 177.7 5.35 × 10–8 –1.42 7.04 × 108 No.9 66.4 267.6 1.24 × 10–7 –1.48 1.87 × 108 表 4 基体和No.5样品拟合电化学阻抗谱曲线得到的电化学参数
Table 4. Electrochemical data obtained by equivalent circuit fitting of EIS curves of substrate and specimen No.5
Immersed time RS/
(Ω·cm2)CPE1/
(Ω–1·sn·cm–2)n1 R1/
(Ω·cm2)CPE2/
(Ω–1·sn·cm–2)n2 R2/
(Ω·cm2)RL/
(Ω·cm2)L/
(H·cm–2)Substrate-0 h 52.91 9.17 × 10–6 0.9412 2.05 × 103 3.66 × 10–3 0.4507 – 405.8 1.11 × 104 6 h 28.47 3.89 × 10–4 0.6054 2.55 × 104 5.96 × 10–7 0.9231 3.85 × 104 – – 12 h 14.88 1.35 × 10–6 0.9495 2.11 × 104 8.97 × 10–5 0.6277 1.31 × 104 – – 24 h 11.87 2.14 × 10–4 0.64 9.14 × 104 2.59 × 10–6 0.9495 1.69 × 104 – – 48 h 9.791 4.23 × 10–4 0.6624 6.10 × 104 5.22 × 10–6 0.9477 1.28 × 104 – – 72 h 76.5 4.49 × 10–4 0.5065 9.02 × 104 5.00 × 10–6 0.9711 1.21 × 104 – – -
[1] NARAYANAN T S N S,PARK I S,LEE M H. Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: prospects and challenges[J]. Progress in Materials Science,2014,60:1-71 doi: 10.1016/j.pmatsci.2013.08.002 [2] 慕伟意,李争显,杜继红,等. 镁合金的应用及其表面处理研究进展[J]. 表面技术,2011,40(2):86-91 doi: 10.3969/j.issn.1001-3660.2011.02.026MU W Y,LI Z X,DU J H,et al. Research progress in application and surface treatment of magnesium alloys[J]. Surface Technology,2011,40(2):86-91.) doi: 10.3969/j.issn.1001-3660.2011.02.026 [3] 曾荣昌,崔蓝月,柯伟. 医用镁合金: 成分, 组织及腐蚀[J]. 金属学报,2018,54(9):1215-1235ZENG R C,CUI L Y,KE W. Medical magnesium alloys:composition, organization and corrosion[J]. Journal of Metals,2018,54(9):1215-1235.) [4] 郝建军,代肇一,王薪惠,等. AZ91D镁合金酸性钒/锆酸盐转化膜的制备[J]. 表面技术,2018,47(4):201-206HAO J J,DAI Z Y,WANG X H,et al. Preparation of AZ91D magnesium alloy acid vanadium/zirconate conversion coating[J]. Surface Technology,2018,47(4):201-206.) [5] 崔蓝月,吴思思,徐丽粉,等. 镁合金表面层层组装PSS/PAH膜诱导钙磷涂层[J]. 表面技术,2017,46(3):34-39CUI L Y,WU S S,XU L F,et al. Induction of calcium phosphorus coating by PSS/PAH film on surface layer of magnesium alloy[J]. Surface Technology,2017,46(3):34-39.) [6] 殷正正,曾荣昌,崔蓝月,等. 医用可降解镁合金表面磷酸盐涂层研究进展[J]. 山东科技大学学报(自然科学版),2017,36(2):58-70YIN Z Z,ZENG R C,CUI L Y,et al. Research progress on phosphate coating on medical degradable magnesium alloy surface[J]. Journal of Shandong University of Science and Technology(Natural Science),2017,36(2):58-70.) [7] 邵忠财,戴诗行,张瑜,等. 铜钴镍离子对镁合金微弧氧化膜的影响[J]. 表面技术,2018,47(4):127-132SHAO Z C,DAI S X,ZHANG Y,et al. Effect of copper, cobalt and nickel ions on microarc oxidation film of magnesium alloy[J]. Surface Technology,2018,47(4):127-132.) [8] SHI P,NG W F,WONG M H,et al. Improvement of corrosion resistance of pure magnesium in Hanks' solution by microarc oxidation with sol-gel TiO2 sealing[J]. Journal of Alloys and Compounds,2009,469(1/2):286-292 [9] CHU C L,HAN X,BAI J,et al. Fabrication and degradation behavior of micro-arc oxidized biomedical magnesium alloy wires[J]. Surface and Coatings Technology,2012,213:307-312 doi: 10.1016/j.surfcoat.2012.10.078 [10] ZHUANG J,SONG R G,XIANG N,et al. Effect of current density on microstructure and properties of PEO ceramic coatings on magnesium alloy[J]. Surface Engineering,2016,33(10):1-9 [11] 张春艳,高家诚,曾荣昌,等. 电化学沉积法制备镁基Ca-P生物陶瓷涂层的研究[J]. 功能材料,2010,41(6):952-956ZHANG C Y,GAO J C,ZENG R C,et al. Electrochemically deposited Ca-P coatings on magnesium alloy[J]. Functional Materials,2010,41(6):952-956.) [12] 陈杰,宋惠,戴宇,等. 镁合金表面冷喷涂420不锈钢/WC-17Co涂层及其耐磨耐蚀性能[J]. 航空材料学报,2018,38(4):82-86CHEN J,SONG H,DAI Y,et al. Wear and corrosion properties of cold sprayed 420 stainless steel/WC-17Co coating on magnesium alloy[J]. Journal of Aeronautical Materials,2018,38(4):82-86.) [13] 张荣发,李明升,龙小丽,等. 电参数对镁合金阳极氧化膜性能影响的研究进展[J]. 中国有色金属学报,2006,16(11):1829-1837 doi: 10.3321/j.issn:1004-0609.2006.11.001ZHANG R F,LI M S,LONG X L,et al. Research progress in effects of electric parameters on properties of anodic coatings on magnesium alloys[J]. Chinese Journal of Nonferrous Metals,2006,16(11):1829-1837.) doi: 10.3321/j.issn:1004-0609.2006.11.001 [14] CHEN X B,LI C,XU D. Biodegradation of Mg-14Li alloy in simulated body fluid:a proof-of-concept study[J]. Bioactive Materials,2018,3(1):110-117 doi: 10.1016/j.bioactmat.2017.08.002 [15] LI L H,NARAYANAN T S N S,KIM Y K,et al. Characterization and corrosion resistance of pure Mg modified by micro-arc oxidation using phosphate electrolyte with/without NaOH[J]. Surface and Interface Analysis,2014,46:7-15 [16] DUAN H,DU K,YAN C,et al. Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D[J]. Electrochimica Acta,2006,51(14):2898-2908 doi: 10.1016/j.electacta.2005.08.026 [17] 庄俊杰,宋仁国,项南,等. 氟锆酸钾对AZ31镁合金微弧氧化膜层的影响[J]. 材料热处理学报,2016,37(9):157-164ZHANG J J,SONG R G,XIANG N,et al. Effect of K2ZrF6 on coatings of AZ31 magnesium alloy prepared by micro-arc oxidation[J]. Journal of Materials Heat Treatment,2016,37(9):157-164.) [18] TANG M,FENG Z,LI G,et al. High-corrosion resistance of the microarc oxidation coatings on magnesium alloy obtained in potassium fluotitanate electrolytes[J]. Surface and Coatings Technology,2015,264(2):105-113 [19] DONG K,SONG Y,SHAN D,et al. Formation mechanism of a self-sealing pore micro-arc oxidation film on AM60 magnesium alloy[J]. Surface and Coatings Technology,2015,100:275-283 [20] TANG M,LI G,LI W,et al. Photocatalytic performance of magnesium alloy microarc oxides[J]. Journal of Alloys and Compounds,2013,562:84-89 doi: 10.1016/j.jallcom.2013.02.051 [21] YEROKHIN A L,LYUBIMOV V,ASHITKOV R V. Phase formation in ceramic coatings during plasma electrolytic oxidation of aluminium alloys[J]. Ceramics International,1998,24(1):1-6 doi: 10.1016/S0272-8842(96)00067-3 [22] TANG M,LI W,LIU H,et al. Influence of K2TiF6 in electrolyte on characteristics of the microarc oxidation coating on aluminum alloy[J]. Current Applied Physics,2012,12(5):1259-1265 doi: 10.1016/j.cap.2012.03.003 [23] DUAN H,YAN C,WANG F. Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D[J]. Electrochimica Acta,2007,52(11):3785-3793 doi: 10.1016/j.electacta.2006.10.066 [24] DING Z Y,CUI L Y,CHEN X B,et al. In vitro corrosion of micro-arc oxidation coating on Mg-1Li-1Ca alloy - the influence of intermetallic compound Mg2Ca[J]. Journal of Alloys and Compounds,2018,764:250-260 doi: 10.1016/j.jallcom.2018.06.073 [25] CUI L Y,LIU H P,ZHANG W L,et al. In vitro corrosion and antibacterial performance of micro-arc oxidation coating on AZ31 magnesium alloy-Effects of tannic acid[J]. Journal of the Electrochemical Society,2018,165(11):821-829 doi: 10.1149/2.0941811jes [26] CUI L Y,ZENG R C,GUAN S K,et al. Degradation mechanism of micro-arc oxidation coatings on biodegradable Mg-Ca alloys-the influence of porosity[J]. Journal of Alloys and Compounds,2017,695:2464-2476 doi: 10.1016/j.jallcom.2016.11.146 [27] 朱庆振,薛文斌,鲁亮,等. (Al2O3-SiO2)sf/AZ91D镁基复合材料微弧氧化膜的制备及电化学阻抗谱分析[J]. 金属学报,2011,47(1):74-80 doi: 10.3969/j.issn.1673-9981.2011.01.020ZHU Q Z,XUE W B,LU L,et al. Preparation of microarc oxidation coating on (Al2O3-SiO2)sf/AZ91D magnesium matrix composite and its electrochemical impedance spectroscopic analysis[J]. Acta Metallurgica Sinica,2011,47(1):74-80.) doi: 10.3969/j.issn.1673-9981.2011.01.020 [28] XIA S J,YUE R,RATEICK R G,et al. Electrochemical studies of AC/DC anodized Mg alloy in NaCl solution[J]. Journal of the Electrochemical Society B,2004,151(3):179-187 doi: 10.1149/1.1646139 [29] 王燕华,王佳,张际标. 镁合金微弧氧化过程中不同电压下获得膜层的性能研究[J]. 中国腐蚀与防护学报,2005,25(5):267-270WANG Y H,WANG J,ZHANG J B. Properties of anodic coatings on AZ91D Mg alloys during micro-arc oxidation process[J]. China Corrosion and Protection,2005,25(5):267-270.) -