笼型倍半硅氧烷(POSS)的官能化、杂化以及在改性环氧树脂中应用研究进展

杨胜 陈珂龙 王智勇 张桐 崔溢

杨胜, 陈珂龙, 王智勇, 张桐, 崔溢. 笼型倍半硅氧烷(POSS)的官能化、杂化以及在改性环氧树脂中应用研究进展[J]. 航空材料学报, 2019, 39(3): 10-24. doi: 10.11868/j.issn.1005-5053.2019.000010
引用本文: 杨胜, 陈珂龙, 王智勇, 张桐, 崔溢. 笼型倍半硅氧烷(POSS)的官能化、杂化以及在改性环氧树脂中应用研究进展[J]. 航空材料学报, 2019, 39(3): 10-24. doi: 10.11868/j.issn.1005-5053.2019.000010
Sheng YANG, Kelong CHEN, Zhiyong WANG, Tong ZHANG, Yi CUI. Progress in functionalization, hybridization of polyhedral oligomeric silsesquioxanes(POSS)and its application in modified epoxy resin[J]. Journal of Aeronautical Materials, 2019, 39(3): 10-24. doi: 10.11868/j.issn.1005-5053.2019.000010
Citation: Sheng YANG, Kelong CHEN, Zhiyong WANG, Tong ZHANG, Yi CUI. Progress in functionalization, hybridization of polyhedral oligomeric silsesquioxanes(POSS)and its application in modified epoxy resin[J]. Journal of Aeronautical Materials, 2019, 39(3): 10-24. doi: 10.11868/j.issn.1005-5053.2019.000010

笼型倍半硅氧烷(POSS)的官能化、杂化以及在改性环氧树脂中应用研究进展

doi: 10.11868/j.issn.1005-5053.2019.000010
详细信息
    通讯作者:

    陈珂龙(1989—),男,博士,主要从事树脂合成及改性方面的研究工作,(E-mail)chenkelong11@163.com

  • 中图分类号: O631.1

Progress in functionalization, hybridization of polyhedral oligomeric silsesquioxanes(POSS)and its application in modified epoxy resin

  • 摘要: 笼型倍半硅氧烷(polyhedral oligomeric silsesquioxane,POSS)具有独特的结构和良好的耐热性,对POSS进行官能化后可得到高性能的新型有机-无机杂化材料,在很多领域具有潜在应用价值。本文综述了POSS的合成、官能化的相关问题。POSS的种类很多应用范围广泛,但是价格相对昂贵,限制了POSS在许多领域内的发展规模;POSS可作为环氧树脂的改性剂,具有明显的增强、增韧效果,并显著提高固化环氧树脂的耐热性能,但是由于POSS的纳米尺寸效应,导致其在树脂中的添加量有限。未来随着POSS合成成本的降低、改性树脂手段的不断进步,POSS在热固性树脂改性领域应用范围必将不断扩大。

     

  • 图  1  笼型倍半硅氧烷分子结构示意图(n = 8)

    Figure  1.  Schematic diagram of molecular structure of POSS(n = 8)

    图  2  倍半硅氧烷的化学结构 (a)笼型倍半硅氧烷,(b)非笼型倍半硅氧烷

    Figure  2.  Chemical structures of cage silsesquioxanes (a)cage structure;(b)non-cage structure

    图  3  “顶角-戴帽”法合成POSS[17-19]

    Figure  3.  Corner-capping synthesis of POSS[17-19]

    图  4  POSS中的官能团转化[28]

    Figure  4.  Functional group transformation in POSS[28]

    图  5  聚己内酯-b-丙烯酸酯POSS二嵌段共聚物(PCL-b-P(MA-POSS))的合成反应[48]

    Figure  5.  Synthesis reaction of PCL-b-P(MA-POSS)diblock copolymer[48]

    图  6  POSS与烯丙基醇反应中的C-氢化硅烷化和O-甲硅烷化[51]

    Figure  6.  C-hydrosilylation and O-silylation in reaction of POSS with allyl alcohol[51]

    图  7  八聚氨基苯基倍半硅氧烷(OAPS)与均苯四甲酸二酐(PMDA)反应生成三维立体交联聚酰亚胺纳米材料[54]

    Figure  7.  Synthesis of three dimensional crosslinked polyimide nanocomposites with OAPS and PMDA[54]

    图  8  Matějka等研究POSS对环氧树脂影响时所用的POSS单体结构[74]

    Figure  8.  Reinforced epoxy system with POSS monomers by Matějka et al[74]

    图  9  OAPS、OG和OC化学结构[74-76]

    Figure  9.  Chemical structures of OAPS, OG and OC[74-76]

    图  10  POSS的有机基团与树脂基体之间形成交联网络[80]

    Figure  10.  Crosslinked network between organic group of POSS and resin matrix[80]

    图  11  两种POSS的结构式[81] (a)氨基POSS;(b)环氧POSS

    Figure  11.  Chemical structures of 2 kinds of POSS[81] (a)amine-POSS;(b)epoxy-POSS

    图  12  DOPO-BQ改性DGEBA化学反应[91]

    Figure  12.  Chemical reaction between DOPO-BQ and DGEBA[91]

    图  13  合成新型阻燃剂的路线(a)以及改性环氧树脂的路线图(b)[13]

    Figure  13.  Synthetic route of new flame retardants(a)and the preparation process of POSS flame retardants modified epoxy resin(b)[13]

  • [1] SCOTT D W. Thermal rearrangement of branched-chain methylpoly siloxanes[J]. Journal of the American Chemical Society,1946,68(3):356-358. doi: 10.1021/ja01207a003
    [2] EDWARD G,ALAN G,PAUL F,et al. Functionalized polyhedral oligosilsesquioxane(POSS)macromers: new graftable POSS hydride, POSS α-olefin, POSS epoxy, and POSS chlorosilane macromers and POSS- siloxane Triblocks[J]. Applied Organometallic Chemistry,1999,13(4):311-327. doi: 10.1002/(ISSN)1099-0739
    [3] ZHANG W C,CAMINO G,YANG R G,et al. Polymer/polyhedral oligomeric silsesquioxane(POSS)nanocomposites: an overview of fire retardance[J]. Progress in Polymer Science,2017,67:77-125. doi: 10.1016/j.progpolymsci.2016.09.011
    [4] MISHRA K,PANDEY G,SINGH P. Enhancing the mechanical properties of an epoxy resin using polyhedral oligomeric silsesquioxane(POSS)as nano-reinforcement[J]. Polymer Testing,2017,62:210-218. doi: 10.1016/j.polymertesting.2017.06.031
    [5] XU J W,YE Q,ZHOU H. Recent advances of cubic polyhedral oligomeric silsesquioxane based functional materials: synthesis, assembly, and applications[J]. Chemistry—An Asian Journal,2016,11(9):1322-1337. doi: 10.1002/asia.201501445
    [6] SHAO Z B,ZHANG M X,LI Y,et al. A novel multi-functional polymeric curing agent: synthesis, characterization, and its epoxy resin with simultaneous excellent flame retardance and transparency[J]. Chemical Engineering Journal,2018,345:471-482. doi: 10.1016/j.cej.2018.03.142
    [7] SHI Y Q,YU B,ZHENG Y Y,et al. A combination of POSS and polyphosphazene for reducing fire hazards of epoxy resin[J]. Polymers for Advanced Technologies,2018,29(4):1242-1254. doi: 10.1002/pat.v29.4
    [8] SULIGA A,JAKUBCZYK E,HAMERTON I,et al. Analysis of atomic oxygen and ultraviolet exposure effects on cycloaliphatic epoxy resins reinforced with octa-functional POSS[J]. Acta Astronautica,2018,142:103-111. doi: 10.1016/j.actaastro.2017.10.018
    [9] MISHRA K,SINGH R. Quantitative evaluation of the effect of dispersion techniques on the mechanical properties of polyhedral oligomeric silsesquioxane(POSS)-epoxy nanocomposites[J]. Polymer Composites,2018,39(Suppl 4):2445-2453.
    [10] RAIMONDO M,GUADAGNO L,SPERANZA V,et al. Multifunctional graphene/POSS epoxy resin tailored for aircraft lightning strike protection[J]. Composites: Part B: Engineering,2018,140:44-56. doi: 10.1016/j.compositesb.2017.12.015
    [11] BILYACHENKO A,LEVITSKY M,KORLYUKOV A,et al. Heptanuclear cage Cu(II)-silsesquioxanes. Features of synthesis, structure and catalytic activity[J]. European Journal of Inorganic Chemistry,2018(22):2505-2511.
    [12] HEELEY E,AZIZ Y,ELLINGFORD C,et al. Self-assembly of fluoride-encapsulated polyhedral oligomeric silsesquioxane(POSS)nanocrystals[J]. Crystal Engineering Communication,2019,21(4):710-723. doi: 10.1039/C8CE01750F
    [13] JIN Y,GUO D,LI B,et al. Synthesis and self-assembly behavior of polyhedral oligomeric silsesquioxane-based triblock copolymers in selective solvents by dissipative particle dynamics simulation[J]. Physical Chemistry Chemical Physics,2018,20:4074-4082. doi: 10.1039/C7CP06020C
    [14] MCCUSKER C,CARROLL J,ROTELLO V,et al. Cationic polyhedral oligomeric silsesquioxane(POSS)units as carriers for drug delivery processes[J]. Chemical Communications,2005(8):996-998. doi: 10.1039/b416266h
    [15] ZHU Y X,JIA H R,CHEN Z,et al. Photosensitizer(PS)/polyhedral oligomeric silsesquioxane(POSS)-crosslinked nanohybrids for enhanced imaging-guided photodynamic cancer therapy[J]. Nanoscale,2017,9(35):12874-12884. doi: 10.1039/C7NR02279D
    [16] HUANG C W,JENG S C. Polyhedral oligomeric silsesquioxane films for liquid crystal alignment[J]. Colloids and Interfaces,2018,2(1):9. doi: 10.3390/colloids2010009
    [17] CORDES D,LICKISS P D,RATABOUL F. Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes[J]. Chemical Reviews,2010,110(4):2081-2173. doi: 10.1021/cr900201r
    [18] WU T Y,QIU J D,LAI X J,et al. Effect and mechanism of hepta-phenyl vinyl polyhedral oligomeric silsesquioxane on the flame retardancy of silicone rubber[J]. Polymer Degradation and Stability,2019,159:163-173. doi: 10.1016/j.polymdegradstab.2018.11.026
    [19] YE M F,WU Y W,ZHANG W C,et al. Synthesis of incompletely caged silsesquioxane(T7-POSS)compounds via a versatile three-step approach[J]. Research on Chemical Intermediates,2018,44(7):4277-4294. doi: 10.1007/s11164-018-3368-2
    [20] KIM K,CHUJO Y. Organic-inorganic hybrid gels having functionalized silsesquioxanes[J]. Journal of Materials Chemistry,2003,13(6):1384-1391. doi: 10.1039/B211030J
    [21] MARCINIEC M,FRANCZYK A,MARCINIEC B. Synthesis of new monofunctionalized silsesquioxanes(RSiMe2O)(i-Bu)7Si8O12 via alkene hydrosilylation[J]. Chemistry—An Asian Journal,2018,13(2):181-186. doi: 10.1002/asia.v13.2
    [22] WALCZAK M,JANUSZEWSKI R,FRANCZYK A,et al. Synthesis of monofunctionalized POSS through hydrosilylation[J]. Journal of Organometallic Chemistry,2018,872:73-78. doi: 10.1016/j.jorganchem.2018.07.021
    [23] SU H W,CHEN W C. Preparation of nanoporous poly(methyl silsesquioxane)films using core-shell silsesquioxane as porogen[J]. Materials Chemistry and Physics,2009,114(2-3):736-741. doi: 10.1016/j.matchemphys.2008.10.035
    [24] XU J W,LI X,CHO C M,et al. Polyhedral oligomeric silsesquioxanes tethered with perfluoroalkylthioether corner groups: facile synthesis and enhancement of hydrophobicity of their polymer blends[J]. Journal of Materials Chemistry,2009,19:4740-4745. doi: 10.1039/b900299e
    [25] ZHANG X H,TAY S W,LIU Z L,et al. Restructure proton conducting channels by embedding starburst POSS-g-acrylonitrile oligomer in sulfonic perfluoropolymer matrix[J]. Journal of Membrane Science,2009,329(1/2):228-235. doi: 10.1016/j.memsci.2008.12.050
    [26] FU H K,HUANG C F,HUANG J M,et al. Studies on thermal properties of PS nanocomposites for the effect of intercalated agent with side groups[J]. Polymer,2008,49(5):1305-1311. doi: 10.1016/j.polymer.2008.01.013
    [27] MIYAKE J,CHUJO Y. Thermally stabilized blue luminescent poly(p-phenylene)s covered with polyhedral oligomeric silsesquioxanes[J]. Macromolecular Rapid Communications,2008,29(1):86-92. doi: 10.1002/(ISSN)1521-3927
    [28] ZENG K,WANG L,ZHENG S X,et al. Self-assembly behavior of hepta(3,3,3-trifluoropropyl)polyhedral oligomeric silsesquioxane-capped poly(ɛ-caprolactone)in epoxy resin: nanostructures and surface properties[J]. Polymer,2009,50(2):685-695. doi: 10.1016/j.polymer.2008.11.024
    [29] CHEN K L,ZHANG T,CUI Y,et al. Reversible complexation mediated polymerization(RCMP)-solution polymerization of methyl methacrylate catalyzed by Bu4N+I-(BNI)with in-situ formed alkyl iodide initiator[J]. Materials Research Express,2018,5(9):95310. doi: 10.1088/2053-1591/aad84f
    [30] 陈珂龙,石艳,杨万泰,等. 碘代化合物存在下的可逆-失活自由基聚合研究进展[J]. 高分子通报,2016(2):1-15.

    CHEN K L,SHI Y,YANG W T,et al. Progress of reversible deactivation radical polymerization(RDRP)with alkyl iodide[J]. Polymer Bulletin,2016(2):1-15.)
    [31] 陈珂龙,惠嘉,石艳,等. 有机催化剂存在下原位生成烷基碘化物的甲基丙烯酸甲酯的可逆-休眠自由基聚合[J]. 高分子学报,2016(1):111-117.

    CHEN K L,HUI J,SHI Y,et al. The use of organic catalysts in reversible-deactivation radical polymerization( RDRP)of methyl methacrylate with in situ formed alkyl iodide initiator[J]. Acta Polymerica Sinica,2016(1):111-117.)
    [32] MISASI J,JIN Q,KNAUER K,et al. Hybrid POSS-hyperbranched polymer additives for simultaneous reinforcement and toughness improvements in epoxy networks[J]. Polymer,2017,117:54-63. doi: 10.1016/j.polymer.2017.04.007
    [33] FU J F,LU Q,ZONG P S,et al. Thermally conductive nanocomposites based on epoxy modified with SiC and POSS[J]. Key Engineering Materials,2017,727:553-557. doi: 10.4028/www.scientific.net/KEM.727
    [34] MARIELEN L,VINICIUS P,PANDOLPHI L,et al. Influence of functionality of polyhedral oligomeric silsesquioxane(POSS)dispersed in epoxy resin for application in hybrid coating[J]. Materials Science Forum,2017,899:278-282. doi: 10.4028/www.scientific.net/MSF.899
    [35] LIU Y H,YANG X T,ZHANG W A,et al. Star-shaped poly(3-caprolactone)with polyhedral oligomeric silsesquioxane core[J]. Polymer,2016,47(19):6814-6825.
    [36] LICHTENHAN J D,OTONARI Y A,CARR M J. Linear hybrid polymer building blocks: methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers[J]. Macromolecules,1995(28):8435-8437.
    [37] PYUN J,MATYJASZEWSKI K. The synthesis of hybrid polymers using atom transfer radical polymerization: homopolymers and block copolymers from polyhedral oligomeric silsesquioxane monomers[J]. Macromolecules,2000,33(1):217-220. doi: 10.1021/ma9910787
    [38] HADDAD T S,LICHTENHAN J D. Hybrid organic-inorganic thermoplastics: styryl-based polyhedral oligomeric silsesquioxane polymers[J]. Macromolecules,1996,29(22):7302-7304. doi: 10.1021/ma960609d
    [39] HADDAD T S,VIERS B D,PHILLIPS S H. Polyhedral oligomeric silsesquioxane(POSS)-styrene macromers[J]. Journal of Inorganic and Organometallic Polymers,2002,11(3):155-164.
    [40] XU H Y,YANG B H,WANG J F,et al. Preparation, thermal properties, and Tg increase mechanism of poly(acetoxystyrene-co -octavinyl-polyhedral oligomeric silsesquioxane)hybrid nanocomposites[J]. Macromolecules,2005,38(25):10455-10460. doi: 10.1021/ma0516687
    [41] KOTAL A,SI S,PAIRA T A,et al. Synthesis of semitelechelic POSS-polymethacrylate hybrids by thiol-mediated controlled radical polymerization with unusual thermal behaviors[J]. Journal of Polymer Science: Part A: Polymer Chemistry,2008,46:1111-1123. doi: 10.1002/(ISSN)1099-0518
    [42] OHNO K,SUGIYAMA S,KOH K,et al. Living radical polymerization by polyhedral oligomeric silsesquioxane-holding initiators: precision synthesis of tadpole-shaped organic/inorganic hybrid polymers[J]. Macromolecules,2004,37(23):8517-8522. doi: 10.1021/ma048877w
    [43] CHEN R X,FENG W,ZHU S P,et al. Surface-initiated atom transfer radical polymerization of polyhedral oligomeric silsesquioxane(POSS)methacrylate from flat silicon wafer[J]. Polymer,2006,47(4):1119-1123. doi: 10.1016/j.polymer.2005.12.025
    [44] ZHANG W A,LIU L,ZHUANG X D,et al. Synthesis and self-assembly of tadpole-shaped organic/inorganic hybrid poly(N-isopropylacrylamide)containing polyhedral oligomeric silsesquioxane via RAFT polymerization[J]. Journal of Polymer Science: Part A: Polymer Chemistry,2008,46(21):7049-7061. doi: 10.1002/pola.v46:21
    [45] ZHANG W A,FANG B,WALTHER A,et al. Synthesis via RAFT polymerization of tadpole-shaped organic/inorganic hybrid poly(acrylic acid)containing polyhedral oligomeric silsesquioxane(POSS)and their self-assembly in water[J]. Macromolecules,2009,42(7):2563-2569. doi: 10.1021/ma802803d
    [46] ZHANG Z H,HONG L Z,CAO Y,et al. One-pot synthesis of POSS-containing alternating copolymers by RAFT polymerization and their microphase-separated nanostructures[J]. Polymer Chemistry,2014,5:4534-4541. doi: 10.1039/c4py00302k
    [47] XU Y T,CHEN J F,HUANG J M. Nanostructuration of reactive polyhedral oligomeric silsesquioxane-based block copolymer as modifier in an epoxy network[J]. High Performance Polymers,2017,29(10):1-10.
    [48] WANG L,LI J G,LI L,et al. Organic-inorganic hybrid diblock copolymer composed of poly(e-caprolactone)and poly(MA POSS): synthesis and its nanocomposites with epoxy resin[J]. Polymer Chemistry,2013(51):2079-2090.
    [49] MAEGAWA T,IRIE Y,IMOTO H,et al. Para-bisvinylhexaisobutyl-substituted T8 caged monomer: synthesis and hydrosilylation polymerization[J]. Polymer Chemistry,2015,6:7500-7504. doi: 10.1039/C5PY01262G
    [50] XIANG K,HE L J,LI Y M,et al. Dendritic AIE-active luminogens with a POSS core: synthesis, characterization, and application as chemosensors[J]. RSC Advances,2015,5:97224-97230. doi: 10.1039/C5RA18152F
    [51] ZHANG C X,LAINE R M. Hydrosilylation of allyl alcohol with [HSiMe2OSiO1.5]8: Octa(3-hydroxypropyldimethylsiloxy)octasilsesquioxane and its octamethacrylate derivative as potential precursors to hybrid nanocomposites[J]. Journal of the American Chemical Society,2000(122):6979-6988.
    [52] MATĚJKA L,MURIAS P,PLEŠTIL J. Effect of POSS on thermomechanical properties of epoxy-POSS nanocomposites[J]. European Polymer Journal,2012,48:260-274. doi: 10.1016/j.eurpolymj.2011.11.009
    [53] NEUMANN D,FISHER M,TRAN L,et al. Synthesis and characterization of an isocyanate functionalized polyhedral oligosilsesquioxane and the subsequent formation of an organic-inorganic hybrid polyurethane[J]. Journal of the American Chemical Society,2002,124(47):13998-13999. doi: 10.1021/ja0275921
    [54] TAMAKI R,CHOI J,LAINE R M. A polyimide nanocomposite from octa(aminophenyl)silsesquioxane[J]. Chemistry of Materials,2003,15(3):793-797. doi: 10.1021/cm020797o
    [55] KIM K,OUCHI Y,CHUJO Y. Synthesis of organic-inorganic star-shaped polyoxazolines using octafunctional silsesquioxane as an initiator[J]. PoIymer Buiietin,2003,49(5):341-348.
    [56] YANG P F,ZHU G M,SHEN X L,et al. Poly(3-caprolactone)-based shape memory polymers crosslinked by polyhedral oligomeric silsesquioxane[J]. RSC Advances,2016,6:90212-90219. doi: 10.1039/C6RA20431G
    [57] LEE K M,KNIGHT P T,CHUNG T,et al. Polycaprolactone-POSS chemical/physical double networks[J]. Macromolecules,2008,41(13):4730-4738. doi: 10.1021/ma800586b
    [58] LIU Y H,YANG X T,ZHANG W A,et al. Star-shaped poly(ɛ-caprolactone)with polyhedral oligomeric silsesquioxane core[J]. Polymer,2006,47(19):6814-6825. doi: 10.1016/j.polymer.2006.07.050
    [59] LI H Y,ZHANG J Y,XU R W,et al. Direct synthesis and characterization of crosslinked polysiloxanes via anionic ring-opening copolymerization with octaisobutyl-polyhedral oligomeric silsesquioxane and octamethylcyclotetrasiloxane[J]. Journal of Applied Polymer Science,2006,102:3848-3856. doi: 10.1002/(ISSN)1097-4628
    [60] CHIO C,KIM Y,KUMAR S,et al. Enhanced resistance to atomic oxygen of og poss/epoxy nanocomposites[J]. Composite Structures,2018,202:959-966. doi: 10.1016/j.compstruct.2018.05.011
    [61] 郑传斌,王世行,李齐方. 二茂铁取代的笼型八聚(二甲基硅氧基)倍半硅氧烷的合成与表征[J]. 化学通报,2009(1):43-47.

    ZHENG C B,WANG S X,LI Q F. Synthesis and characterization of ferrocenyl substituted octakis(dimethylsiloxy)octasilsesquioxanes[J]. Chemistry,2009(1):43-47.)
    [62] KNAUER K M,JENNINGS A R,BRISTOL A N,et al. Enhanced surface properties of branched poly(ether sulfone)from semifluorinated polyhedral oligomeric silsequioxanes[J]. ACS Applied Materials & Interfaces,2016,8(19):12434-12444.
    [63] PAN S,KOTA A K,MABRY J M,et al. Superomniphobic surfaces for effective chemical shielding[J]. Journal of the American Chemical Society,2013,135(2):578-581. doi: 10.1021/ja310517s
    [64] XU J W,LI X,CHO C M,et al. Polyhedral oligomeric silsesquioxanes tethered with perfluoroalkylthioether corner groups: facile synthesis and enhancement of hydrophobicity of their polymer blends[J]. Journal of Materials Chemistry,2009,19(27):4740-4745. doi: 10.1039/b900299e
    [65] LIU M J,WANG S T,WEI Z X,et al. Bioinspired design of a superoleophobic and low adhesive water/solid interface[J]. Advanced Materials,2009,21(6):665-669. doi: 10.1002/adma.v21:6
    [66] TETUJA A,CHOI W,MA M,et al. Designing superoleophobic surfaces[J]. Science,2007,318:1618-1622. doi: 10.1126/science.1148326
    [67] KYOTO M,NAO H,HIDEYUKI O,et al. Stabilization of polystyrene thin films against dewetting by silsesquioxane-terminated polystyrene additives[J]. Chemistry Letters,2006,35(10):1098-1099. doi: 10.1246/cl.2006.1098
    [68] 徐洪耀,严正权,张超,等. 多面体笼型倍半硅氧烷纳米杂化低介电材料的研究[J]. 高等学校化学学报,2011,32(9):1962-1969.

    XU H Y,YAN Z Q,ZHANG C,et al. Study on nanometer hybrid low dielectric constant materials from polyhedral oligosilsesquioixanes[J]. Chemical Journal of Chinese Universities,2011,32(9):1962-1969.)
    [69] XI K,HE H,XU D,et al. Ultra low dielectric constant polysilsesquioxane films using T8(Me4NO)8 as porogen[J]. Thin Solid Films,2010,518(17):4768-4772. doi: 10.1016/j.tsf.2010.01.020
    [70] ZHANG C,GUANG S Y,ZHU X B,et al. Mechanism of dielectric constant variation of POSS-based organic−inorganic molecular hybrids[J]. The Journal of Physical Chemistry C,2010,114(51):22455-22461. doi: 10.1021/jp1080753
    [71] DAVID E, ANDRITSCH T. Dielectric properties of epoxy/POSS and PE/POSS systems[M]∥KALIA S, PIELICHOWSKI K. Polymer/POSS Nanocomposites and Hybrid Materials. Switzerland AG: Springer, 2018: 233-254.
    [72] CHEN K L,ZHANG T,CUI Y,et al. OH- and NH2-terminated hyperbranched polysiloxanes: controlled synthesis, characterization, toughening, and reinforcing epoxy resin[J]. Macromolecular Chemistry and Physics,2018,219(18):1800200. doi: 10.1002/macp.v219.18
    [73] LEE A,LICHTENHAN J D. Viscoelastic responses of polyhedral oligosilsesquioxane reinforced epoxy systems[J]. Macromolecules,1998,31(15):4970-4974. doi: 10.1021/ma9800764
    [74] MATEJKA L,MURIAS P,PLESTIL J. Effect of POSS on thermomechanical properties of epoxy-POSS nanocomposites[J]. European Polymer Journal,2012,48(2):260-274. doi: 10.1016/j.eurpolymj.2011.11.009
    [75] CHOI J,HARCUP J,YEE A F,et al. Organic/inorganic hybrid composites from cubic silsesquioxanes[J]. Journal of the American Chemistry Society,2001,123(46):11420-11430.
    [76] LAINE R M,CHOI J,LEE I. Organic-inorganic nanocomposites with completely defined interfacial interactions[J]. Advanced Materials,2001,13(11):800-803.
    [77] TAMAKI R,TANAKA Y,ASUNCION M Z,et al. Octa(aminophenyl)silsesquioxane as a nanoconstruction site[J]. Journal of the American Chemistry Society,2001,123(49):12416-12417.
    [78] KIM S G,CHOI J,TAMAKI R,et al. Synthesis of amino-containing oligophenylsilsesquioxanes[J]. Polymer,2005,46(12):4514-4524.
    [79] CHOI J,YEE A F,LAINE R M. Toughening of cubic silsesquioxane epoxy nanocomposites using core-shell rubber particles: a three-component hybrid system[J]. Macromolecules,2004,37(9):3267-3276.
    [80] MATEJKA L,STRACHOTA A,PLESTIL J,et al. Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes(POSS):structure and morphology[J]. Macromolecules,2004,37(25):9449-9456.
    [81] CONSTANTIN F,GAREA S A,IOVU H. The influence of organic substituents of polyhedral oligomeric silsesquioxane on the properties of epoxy-based hybrid nanomaterials[J]. Composites: Part B: Engineering,2013,44(1):558-564.
    [82] FLOREA N M,LUNGU A,BADICA P,et al. Novel nanocomposites based on epoxy resin/epoxy-functionalized polydimethylsiloxane reinforced with POSS[J]. Composites: Part B: Engineering,2015,75:226-234.
    [83] FLOREA N M,LUNGU A,BALANUCA B,et al. Effect of polyhedral oligomeric silsesquioxane nanoreinforcement on the properties of epoxy resin/monoglycidylether-terminated poly(dimethylsiloxane)nanocomposites[J]. High Performance Polymers,2016,28(6):724-734.
    [84] CHEN G X,SI L,LU P,et al. Epoxy hybrid composites cured with octaaminophenyl polyhedral oligomeric silsesquioxane[J]. Journal of Applied Polymer Science,2012,125(5):3929-3935.
    [85] FU B X,NAMANI M,LEE A. Influence of phenyl-trisilanol polyhedral silsesquioxane on properties of epoxy network glasses[J]. Polymer,2003,44(25):7739-7747.
    [86] LIU H,ZHENG S,NIE K. Morphology and thermomechanical properties of organic-inorganic hybrid composites involving epoxy resin and an incompletely condensed polyhedral oligomeric silsesquioxane[J]. Macromolecules,2005,38(12):5088-5097.
    [87] SULAIMAN S,BRICK C M,DE SANA C M,et al. Tailoring the global properties of nanocomposites. Epoxy resins with very low coefficients of thermal expansion[J]. Macromolecules,2006,39(16):5167-5169.
    [88] CHANDRAMOHAN A,DINKARAN K,KUMAR A A,et al. Synthesis and characterization of epoxy modified cyanate ester POSS nanocomposites[J]. High Performance Polymers,2012,24(5):405-417.
    [89] 吴昆,张卡,沈敏敏,等. 环氧树脂/笼型倍半硅氧烷纳米复合材料的阻燃性能与热解机理[J]. 高分子材料科学与工程,2011,27(10):81-84.

    WU K,ZHANG K,SHEN M M,et al. Flame retardancy and thermal degradation of EP/POSS nanocomposite[J]. Polymer Materials Science and Engineering,2011,27(10):81-84.)
    [90] WU K,KANDOLA B K,KANDARE E,et al. Flame retardant effect of polyhedral oligomeric silsesquioxane and triglycidyl isocyanurate on glass fibre-reinforced epoxy composites[J]. Polymer Composites,2011,32(3):378-389.
    [91] WANG X,HU Y,SONG L,et al. Thermal degradation behaviors of epoxy resin/POSS hybrids and phosphorus-silicon synergism of flame retardancy[J]. Journal of Polymer Science: Part B: Polymer Physics,2010,48(6):693-705.
    [92] LIU B,JIANG C M,ZHANG C L,et al. Octasilsesquioxane-reinforced TMBP epoxy nanocomposites: characterization of thermal, flame-retardant, and morphological properties[J]. High Performance Polymers,2012,24(8):747-755.
    [93] LIU C,CHEN T,SONG C F,et al. Modification of epoxy resin through the self-assembly of a surfactant like multi-element flame retardant[J]. Journal of Materials Chemistry A,2016(4):3462-3470.
  • 加载中
图(13)
计量
  • 文章访问数:  2984
  • HTML全文浏览量:  1159
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-25
  • 修回日期:  2019-03-28
  • 网络出版日期:  2019-05-10
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回