单晶高温合金弹性模量和泊松比测试方法的现状分析

赵澎涛 于慧臣 何玉怀

赵澎涛, 于慧臣, 何玉怀. 单晶高温合金弹性模量和泊松比测试方法的现状分析[J]. 航空材料学报, 2019, 39(3): 25-34. doi: 10.11868/j.issn.1005-5053.2019.000019
引用本文: 赵澎涛, 于慧臣, 何玉怀. 单晶高温合金弹性模量和泊松比测试方法的现状分析[J]. 航空材料学报, 2019, 39(3): 25-34. doi: 10.11868/j.issn.1005-5053.2019.000019
Pengtao ZHAO, Huichen YU, Yuhuai HE. Current situation of research on test methods for elastic modulus and Poisson’s ratio of single crystal superalloys[J]. Journal of Aeronautical Materials, 2019, 39(3): 25-34. doi: 10.11868/j.issn.1005-5053.2019.000019
Citation: Pengtao ZHAO, Huichen YU, Yuhuai HE. Current situation of research on test methods for elastic modulus and Poisson’s ratio of single crystal superalloys[J]. Journal of Aeronautical Materials, 2019, 39(3): 25-34. doi: 10.11868/j.issn.1005-5053.2019.000019

单晶高温合金弹性模量和泊松比测试方法的现状分析

doi: 10.11868/j.issn.1005-5053.2019.000019
基金项目: 航空动力基金项目(6141B090556)
详细信息
    通讯作者:

    于慧臣(1964—),男,博士,研究员,主要从事材料疲劳与断裂研究,(E-mail)yhcyu@126.com

  • 中图分类号: V216.4

Current situation of research on test methods for elastic modulus and Poisson’s ratio of single crystal superalloys

  • 摘要: 针对单晶高温合金等材料弹性常数表现出的各向异性特点,归纳了现有用于单晶高温合金弹性模量和泊松比的两种主要测试方法:静态法和动态法。分析单晶高温合金弹性模量和泊松比的国内外研究现状,总结目前国内外研究中存在的主要问题及可行的解决途径,并指出:单晶高温合金弹性模量和泊松比测试缺乏专门的测试标准;相比国外,国内在测试与表征技术研究方面还存在明显的差距,工程应用中往往忽视晶体取向对弹性模量和泊松比的影响,因此有必要针对现有的测试标准和方法对测量单晶高温合金弹性常数的误差影响进行评估,制定适用于单晶高温合金的测试标准。同时,详细阐述在考虑晶体取向的影响下,通过对晶体取向指数与弹性模量的线性回归分析,建立单晶高温合金DD6材料弹性模量和泊松比与晶体取向的定量关系的过程。

     

  • 图  1  单晶合金弹性模量与晶体取向关系 (a)示意图[18];(b)曲线图[20]

    Figure  1.  Relation between elastic modulus and crystal orientation of single crystal alloys (a)sketch map[18];(b)curve graph[20]

    图  2  拉伸试样图

    Figure  2.  Tensile specimen diagram

    图  3  DD6单晶合金晶向参数与弹性模量的关系图

    Figure  3.  Relation between crystal direction parameters and elastic moduli of DD6 single crystal alloy

    表  1  材料弹性模量和泊松比的测量标准方法与应用范围

    Table  1.   Standard method for measuring elastic modulus and Poisson’s ratio of materials and application range

    Type Standard method Standard name Application range
    Static method Extensometer GB/T 22315;ASTM E111;ASTM E143 Metallic materials EGμ
    Nanoindentation ISO 14577 Ploymer E
    Moireinterferometry HB 20448 Metallic materials Eμ
    Dynamic method Sonic resonance ASTM E1875 Metallic materials EdGd
    Impulse excitation of vibration GB/T 22315;ASTM E1876;
    ISO 12680-1
    Metallic materials EdGd
    Ultrasonic ASTM E494 Metallic materials EGμ
    Others Neutron diffraction ASTM E1316;ISO 21432 Metallic materials Eμ
    Note:E, G and μ are Young’s modulus, shear modulus and Poisson’s ratio;Ed and Gd are dynamic Young’s modulus and shear modulus.
    下载: 导出CSV

    表  2  DD6合金的化学成分(质量分数/%)

    Table  2.   Chemical composition of DD6 alloy(mass fraction/% )

    Cr Co W Mo Al Nb Ta Re Hf Ni
    3.8-4.8 8.5-9.5 7.0-9.0 1.5-2.5 5.2-6.2 0-1.2 6.0-8.5 1.6-2.4 0.05-0.15 Bal.
    下载: 导出CSV

    表  3  不同测试温度和晶体取向试样的弹性模量

    Table  3.   Elastic modulus of specimens at different test temperatures and crystal orientations

    Temperature/℃ No. of sample Deviation of orientation/° J E/GPa
    [001] [011] [111]
    20 D1T51 3.9 41.2 51.4 4.60×10–3 130.0
    20 D1T52 7.4 38.3 47.8 1.64×10–2 131.0
    20 D2T59 39.8 5.3 34.7 2.42×10–1 218.0
    20 D2T510 44.1 1.9 33.5 2.50×10–1 221.0
    20 C15-2B 43.7 1.8 34.1 2.50×10–1 233.0
    20 C26-8A 43.9 5.9 29.6 2.54×10–1 232.0
    20 S42-5A 51.5 29.4 5.9 3.27×10–1 317.0
    20 S42-6A 50.3 32.3 4.6 3.29×10–1 316.0
    20 S43-7A 49.9 30.6 5.6 3.27×10–1 315.0
    850 183-11B 5.4 40.3 49.6 8.79×10–1 101.7
    850 185-8B 8.4 37.6 46.9 2.10×10–1 99.9
    850 187-7B 7.9 39.6 46.9 1.86×10–1 100.0
    850 D2T55 43.8 2.6 33.0 2.50×10–1 193.2
    850 F15-9A 44.1 1.6 33.9 2.50×10–1 187.5
    850 F18-1A 44.0 2.6 32.9 2.51×10–1 193.1
    850 F18-8A 43.4 1.6 35.1 2.49×10–1 183.2
    850 B10-12A 42.9 2.2 34.8 2.49×10–1 200.4
    850 F16-7A 43.4 1.7 34.8 2.49×10–1 199.9
    850 F16-2A 41.5 3.5 35.4 2.46×10–1 189.5
    850 B10-1A 44.3 0.7 35.2 2.50×10–1 187.7
    850 B10-13A 43.8 3.5 32.1 2.51×10–1 191.2
    下载: 导出CSV

    表  4  晶向参数与弹性模量的方程常数

    Table  4.   Equation constants of crystal direction parameters and elastic moduli

    Temperature/℃ S11 2(S11 - S12 - S44/2)
    20 0.00785 0.01405
    20[40] 0.00749 0.01323
    850 0.01027 0.02022
    下载: 导出CSV
  • [1] 张国栋,苏彬,王泓,等. 弹性模量对高温低周应变疲劳参数的影响[J]. 航空动力学报,2005,20(5):768-771. doi: 10.3969/j.issn.1000-8055.2005.05.011

    ZHANG G D,SU B,WANG H,et al. Effect of elastic modulus on parameter of low cycle fatigue performance[J]. Journal of Aerospace Power,2005,20(5):768-771.) doi: 10.3969/j.issn.1000-8055.2005.05.011
    [2] 张志华,于慧臣,李影,等. 单晶镍基高温合金在600~760 ℃下的低循环疲劳行为[J]. 航空材料学报,2018,3(28):58-64.

    ZHANG Z H,YU H C,LI Y,et al. Low cycle fatigue behaviors of single crystal nickel-based superalloy at temperatures of 600~760 ℃[J]. Journal of Aeronautical Materials,2018,3(28):58-64.)
    [3] 张仕朝,李旭东,于慧臣,等. DD6合金1100 ℃低周疲劳行为[J]. 航空材料学报,2018,1(38):95-100.

    ZHANG S C,LI X D,YU H C,et al. Low cycle fatigue of single crystal nickel-based superalloy DD6 at 1100 ℃[J]. Journal of Aeronautical Materials,2018,1(38):95-100.)
    [4] BAEK D C,PARK T S,LEE S B. Measurement of mechanical properties of electroplated nickel thin film[J]. Key Engineering Materials,2004,261-263:417-422. doi: 10.4028/www.scientific.net/KEM.261-263
    [5] OUDRISS A,FLEURENTIN A,COURLIT G,et al. Consequence of the diffusive hydrogen contents on tensile properties of martensitic steel during the desorption at room temperature[J]. Materials Science and Engineering: A,2014,598:420-428. doi: 10.1016/j.msea.2014.01.039
    [6] LETHBRIDGE Z A D,WILLIAMS J J,WALTON R I,et al. Direct static measurement of single-crystal Young’s moduli of the zeolite natrolite: comparison with dynamic studies and simulations[J]. Acta Materialia,2006,54(9):2533-2545. doi: 10.1016/j.actamat.2006.01.034
    [7] SENGUPTA A,PUTATUNDA S K,BARTOSIEWICZ L,et al. Tensile behavior of a new single crystal nickel-based superalloy(CMSX-4) at room and elevated temperatures[J]. Journal of Materials Engineering and Performance,1994,3(5):664-672. doi: 10.1007/BF02645265
    [8] MIGLIORI A,MAYNARD J D. Implementation of a modern resonant ultrasound spectroscopy system for the measurement of the elastic moduli of small solid specimens[J]. Review of Scientific Instruments,2005,76:1-7.
    [9] HALDIPUR P,MARGETAN F J,THOMPSON R B. Estimation of single-crystal elastic constants from ultrasonic measurements on polycrystalline specimens[J]. AIP Conference Proceedings,2004,700:1061-1068. doi: 10.1063/1.1711735
    [10] OGI H,LEDBETTER H,KIM S,et al. Contactless mode-selective resonance ultrasound spectroscopy: electromagnetic acoustic resonance[J]. The Journal of the Acoustical Society of America,1999,106(2):660-665. doi: 10.1121/1.427607
    [11] ADELINET M,FORTIN J,GUEGUENY,et al. Frequency and fluid effects on elastic properties of basalt: experimental investigations[J]. Geophysical Research Letters,2010,37(2):489-496.
    [12] 李禾,严超华,李仁增,等. 云纹干涉法测定高温材料弹性模量及泊松比[J]. 机械强度,2004,26(3):302-306. doi: 10.3321/j.issn:1001-9669.2004.03.016

    LI H,YAN C H,LI R Z,et al. Measuring elastic modulus and Poisson’s ratio for high temperature materials by Moiré interferometry[J]. Journal of Mechanical Strength,2004,26(3):302-306.) doi: 10.3321/j.issn:1001-9669.2004.03.016
    [13] GOGU C,YIN W,HAFTKA R,et al. Bayesian identification of elastic constants in multi-directional laminate from Moiré interferometry displacement fields[J]. Experimental Mechanics,2013,53(4):635-648. doi: 10.1007/s11340-012-9671-8
    [14] EBERL C,GIANOLA D S,WANG X,et al. A method for in situ measurement of the elastic behavior of a columnar thermal barrier coating[J]. Acta Materialia,2011,59(9):3612-3620. doi: 10.1016/j.actamat.2011.02.034
    [15] STONE H J,HOLDENT M,REED R C. Determination of the plane specific elastic constants of waspaloy using neutron diffraction[J]. Scripta Materialia,1999,40(3):353-358. doi: 10.1016/S1359-6462(98)00437-0
    [16] GNAUPELH T,BRAND P C,PRASK H J. Accessing the elastic properties of cubic materials with diffraction methods[J]. Advances in X-Ray Analysis,1998,42:464.
    [17] GNAUPEL H T,BRAND P C,PRASK H J. Calculation of single-crystal elastic constants for cubic crystal symmetry from powder diffraction data[J]. Journal of Applied Crystallography,1998,31(6):929-935. doi: 10.1107/S002188989800898X
    [18] SIEBORGER D,KNAKE H,GLATZEL U. Temperature dependence of the elastic moduli of the nickel-base superalloy CMSX-4 and its isolated phases[J]. Materials Science and Engineering: A,2001,298:26-33. doi: 10.1016/S0921-5093(00)01318-6
    [19] WALTONR I,SMITH C W,LETHBRIDGE Z A D,et al. Elastic anisotropy and extreme Poisson’s ratios in single crystal[J]. Acta Materialia,2010,58(19):6444-6451. doi: 10.1016/j.actamat.2010.08.006
    [20] HERMANN W,SOCKEL H G,HAN J,et al. Elastic properties and determination of elastic constants of nickel-base superalloy by a free-free beam technique[J]. Superalloys,1996:229-238.
    [21] TURLEY J,SINES G. The anisotropy of Young’s modulus, shear modulus and Poisson’s ratio in cubic materials[J]. Journal of Physics D: Applied Physics,1971,4(2):264-271. doi: 10.1088/0022-3727/4/2/312
    [22] HACHET G,METSUE A,OUDRISS A,et al. Influence of hydrogen on the elastic properties of nickel single crystal: a numerical and experimental investigation[J]. Acta Materialia,2018,148:280-288. doi: 10.1016/j.actamat.2018.01.056
    [23] LEISURE R G,WILLIS F A. Resonant ultrasound spectroscopy[J]. Journal of Physics: Condensed Matter,1997,9:6001-6029. doi: 10.1088/0953-8984/9/28/002
    [24] LI D Y,SZPUNAR J A. Determination of single crystals’ elastic constants from the measurement of ultrasonic velocity in the polycrystalline material[J]. Acta Metallurgica et Materialia,1992,40:3277-3283. doi: 10.1016/0956-7151(92)90041-C
    [25] WADLEY H N G,LU Y,GOLDMAN J A. Ultrasonic determination of single crystal sapphire fiber modulus[J]. Journal of Nondestructive Evaluation,1995,14(1):31-38. doi: 10.1007/BF00735669
    [26] RINKEVICH A B,STEPANOVA N N,RODIONOV D P. Velocities of elastic waves and the elasticity moduli of nickel-base superalloy and of the 60N21 alloy[J]. The Physics of Metals and Metallography,2008,105(5):509-516. doi: 10.1134/S0031918X08050128
    [27] PATEL D K,HARBI H F,KALIDINDI S R. Extracting single-crystal elastic constants from polycrystalline samples using spherical nanoindentation and orientation measurements[J]. Acta Materialia,2014,79:108-116. doi: 10.1016/j.actamat.2014.07.021
    [28] KIM Y,KIM Y M,KOH J Y,et al. Evaluation of single crystal elastic constants and stacking fault energy in high-nitrogen duplex stainless steel by in-situ neutron diffraction[J]. Scripta Materialia,2016,119:1-4. doi: 10.1016/j.scriptamat.2016.03.013
    [29] PEREA P E,PIRLING T,WITHERS P J,et al. Determination of the high temperature elastic properties and diffraction elastic constants of Ni-base superalloy[J]. Materials & Design,2016,89:856-863.
    [30] ZHUF,BAI P,GONG Y,et al. Accurate measurement of elastic modulus of specimen with initial bending using two-dimensional DIC and dual-reflector imaging technique[J]. Measurement,2018,119:18-27. doi: 10.1016/j.measurement.2018.01.043
    [31] RAMIHA,RAMI E,VICTOR F,et al. Mechanical characterization of aerogel materials with digital image correlation[J]. Microporous and Mesoporous Materials,2016,226:44-52. doi: 10.1016/j.micromeso.2015.12.035
    [32] TAKAGI H,FUJIWARA M,KAKEHI K. Measuring Young’s modulus of Ni-based superalloy single crystals at elevated temperatures through microindentation[J]. Materials Science and Engineering: A,2004,387-389:348-351. doi: 10.1016/j.msea.2004.01.061
    [33] DYE D,COAKLEY J,VORONTSOV VA,et al. Elastic moduli and load partitioning in a single-crystal nickel superalloy[J]. Scripta Materialia,2009,61:109-112. doi: 10.1016/j.scriptamat.2009.03.008
    [34] WANG Z,STOICA A D,MA D,et al. Diffraction and single-crystal elastic constants of inconel 625 at room and elevated temperature determined by neutron diffraction[J]. Materials Science and Engineering: A,2016,674:406-412. doi: 10.1016/j.msea.2016.08.010
    [35] GOLYNETS S A,TOLORAIYA V N,NEKRASOV S N,et al. Experimental determination of Poisson’s ratio of a single crystal nickel heat-resistant alloy in the temperature range of 20-1000 ℃[J]. Physics of Metal and Metallography,2017,118(9):922-927. doi: 10.1134/S0031918X17070043
    [36] HERMANN W,SOCKEL H G. Investigation of the high-temperature damping of the nickel-base superalloy CMSX-4 in the kHz-range[J]. American Society for Testing and Materials,1997,1304:143-152.
    [37] ICHITSUBO T,KOUMOTO D,HIRAO M,et al. Elastic anisptropy of rafted Ni-base superalloy at high temperatures[J]. Acta Materialia,2003,51(16):4863-4869. doi: 10.1016/S1359-6454(03)00326-4
    [38] MA S,BROWN D,BOURKE M A M,et al. Microstrain evolution during creep of a high volume fraction superalloy[J]. Materials Science and Engineering: A,2005,399(1):141-153.
    [39] 赵乃仁,王志辉,李金国,等. 一种镍基单晶高温合金的各向异性研究[J]. 材料工程,2008(2):58-61. doi: 10.3969/j.issn.1673-1433.2008.04.015

    ZHAO N R,WANG Z H,LI J G,et al. Investigation of the anisotropy for a nickel-base single crystal superalloy[J]. Journal of Materials Engineering,2008(2):58-61.) doi: 10.3969/j.issn.1673-1433.2008.04.015
    [40] 于慧臣,李影,李骋,等. 一种单晶镍基高温合金在不同温度下的静拉伸性能[J]. 航空动力学报,2005,20(6):958-963. doi: 10.3969/j.issn.1000-8055.2005.06.010

    YU H C,LI Y,LI C,et al. Tensile behavior of a single crystal Ni-base superalloy at different temperatures[J]. Journal of Aerospace Power,2005,20(6):958-963.) doi: 10.3969/j.issn.1000-8055.2005.06.010
    [41] 成晓鸣, 杨治国, 尹泽勇. 单晶合金弹性模量及剪切模量的测量与计算[C] //中国航空学会航空发动机强度振动学术会议论文集. 北京: 航空动力机械研究所, 1998: 37-41.

    CHENG X M, YANG Z G, YIN Z Y. Measurement and calculation of elastic modulus and shear modulus of single crystal alloys[C] //Proceedings of the Academic Conference on Aeroengine Intensity Vibration of the Chinese Aeronautical Society. Beijing: Institute of Aeronautical Power Machinery, 1998: 37-41.
    [42] 谢惠民,朱祖成,戴福隆. 金属材料高温蠕变变形的云纹干涉法实验研究[J]. 清华大学学报,1996,36(3):42-46. doi: 10.3321/j.issn:1000-0054.1996.03.002

    XIE H M,ZHU Z C,DAI F L. Study of creep deformation of metal materials with Moiré interferometry[J]. Journal of Tsinghua University,1996,36(3):42-46.) doi: 10.3321/j.issn:1000-0054.1996.03.002
    [43] 张宸宇,吴琼,董爱民. 云纹干涉法测定1200 ℃单晶材料弹性模量及泊松比研究[J]. 应用激光,2016,36(4):434-439.

    ZHANG H Y,WU Q,DONG A M. Moiré interferometer method for measuring Young’s modulus and Poisson’s ratio of 1200 ℃ high-temperature[J]. Applied Laser,2016,36(4):434-439.)
    [44] 李禾,张少钦,邓颖,等. 高温泊松比测试方法与对比[J]. 宇航材料工艺,2011,41(6):28-31. doi: 10.3969/j.issn.1007-2330.2011.06.007

    LI H,ZHANG S Q,DENG Y,et al. Methods for testing of Poisson’s ratio at elevated temperature[J]. Aerospace Materials and Technology,2011,41(6):28-31.) doi: 10.3969/j.issn.1007-2330.2011.06.007
    [45] 张谦琳,周劲林. 定向结晶合金材料全部工程弹性常数的超声测定[J]. 实验力学,1997,12(4):506-512.

    ZHANG Q L,ZHOU J L. Determination of all engineering elastic constants for an orientational crystalline alloy with ultrasonic method[J]. Journal of Experimental Mechanics,1997,12(4):506-512.)
    [46] 夏俊伟,孙霓,陈以方. 超声相控阵法测量材料的弹性模量[J]. 无损检测,2014,36(6):37-39.

    XIA J W,SUN N,CHEN Y F. Material elastic modulus measurement with ultrasonic phased array[J]. Nondestructive Testing,2014,36(6):37-39.)
    [47] 胡兴建,郑百林,杨彪,等. 压头对Ni基单晶合金纳米压痕结果的影响[J]. 材料科学与工程学报,2014,32(6):803-808.

    HU X J,ZHENG B L,YANG B,et al. Influence of indenter on the nanoindentation of Ni based single crystal alloy[J]. Journal of Materials Science & Engineering,2014,32(6):803-808.)
    [48] 朱强,蒋庄德,赵则祥,等. 在纳米压入仪上进行悬臂梁法测量弹性模量的影响因素分析[J]. 稀有金属材料与工程,2005,34(11):1842-1845. doi: 10.3321/j.issn:1002-185X.2005.11.040

    ZHU Q,JIANG Z D,ZHAO Z X,et al. Analysis of the influence factors on the measurement of elastic modulus using the microcantilever deflection on a nanoindenter[J]. Rare Metal Materials and Engineering,2005,34(11):1842-1845.) doi: 10.3321/j.issn:1002-185X.2005.11.040
    [49] LYONS J S,LIU J,SUTTON M A. High-temperature deformation measurement using digital image correlation[J]. Experimental Mechanics,1996,36(1):64-70. doi: 10.1007/BF02328699
    [50] PAN B,QIAN K M,XIE H M,et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review[J]. Measurement Science and Technology,2009,20(6):62001-0. doi: 10.1088/0957-0233/20/6/062001
    [51] 潘兵,吴大方,高镇同. 基于数字图像相关方法的非接触高温热变形测量系统[J]. 航空学报,2010,31(10):1960-1967.

    PAN B,WU D F,GAO Z T. A non-contact high-temperature deformation measuring system based on digital image correlation technique[J]. Acta Aeronautica et Astronautica Sinica,2010,31(10):1960-1967.)
    [52] 潘兵,吴大方,高镇同,等. 1200 ℃高温热环境下全场变形的非接触光学测量方法研究[J]. 强度与环境,2011,38(1):52-59. doi: 10.3969/j.issn.1006-3919.2011.01.009

    PAN B,WU D F,GAO Z T,et al. Study of non-contact optical metrology for full-field deformation measurement at 1200 ℃[J]. Structure & Environment Engineering,2011,38(1):52-59.) doi: 10.3969/j.issn.1006-3919.2011.01.009
    [53] REICHSTEIN S,KRAFT S,MUGHRABI H. Sequence of distinct microyielding stages of the monocrystalline nickel-base superalloy CMSX-6 at high temperature[J]. International Journal of Materials Research,2009,100(4):494-499. doi: 10.3139/146.110061
    [54] 郭立,王延荣. 定向结晶及相应单晶材料弹性常数间的关系[J]. 航空发动机,2007,33(2):22-26. doi: 10.3969/j.issn.1672-3147.2007.02.007

    GUO L,WANG Y R. Relationship of elastic constants between DS and corresponding SC material[J]. Aeroengine,2007,33(2):22-26.) doi: 10.3969/j.issn.1672-3147.2007.02.007
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  2986
  • HTML全文浏览量:  1334
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-19
  • 修回日期:  2019-04-12
  • 网络出版日期:  2019-05-10
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回