Inhibition of interface reaction of DZ22B alloy and high purity Al2O3 mould surface by changing directional solidification process parameters
-
摘要: 采用改变定向凝固工艺参数的方法研究浇注温度与抽拉速率对DZ22B镍基高温合金与高纯Al2O3陶瓷模壳面层材料间界面反应影响。利用SLM观察界面反应宏观的不同特征区域,使用配备有EDS的SEM分析研究合金-模壳界面反应处的微观结构及对界面反应产物元素种类进行定性分析,通过XRD与XPS对界面反应产物的相与元素价态进行鉴定。结果表明,界面反应产物主要为HfO2与Al1.98Cr0.02O3且沿定向凝固方向呈现区域分布,且在保证定向凝固合金组织的前提下,降低浇注温度、提高抽拉速率能够抑制延缓界面反应的发生。Abstract: The effect of casting temperature and withdrawal rate on the interfacial reaction between DZ22B nickel-base superalloy and high-purity Al2O3 ceramic shell facecoat material was studied by changing the parameters of directional solidification process.The SLM was used to observe the different characteristic regions of the macroscopic reaction. The SEM analysis equipped with EDS was used to study the microstructure of the alloy-formed shell interface and the qualitative analysis of the interfacial reaction product elements. The phase and element valence of the interfacial reaction product were identified by XRD and XPS.The results show that the interface reaction products are mainly HfO2 and Al1.98Cr0.02O3 and exhibit a sub-regional distribution along the direction of directional solidification.Under the premise of ensuring the directionally solidified alloy structure, lowering the pouring temperature and increasing the withdrawal rate can inhibit the occurrence of delayed interface reaction.
-
图 2 不同工艺参数下带有粘砂层的定向凝固DZ22B试棒照片及试棒表面不同高度局部体式显微镜放大图 (a)浇注温度:1550 ℃,抽拉速率:4 mm•min–1;(b)浇注温度:1530 ℃,抽拉速率:4 mm•min–1;(c)浇注温度:1550 ℃,抽拉速率:5 mm•min–1;(d)浇注温度:1510 ℃,抽拉速率:6 mm•min–1
Figure 2. Photographs of directional solidification DZ22B test bar with sand layer under different process parameters and magnified image of local body microscope with different heights on the surface of test bar (a)pouring temperature:1550 ℃,withdrawal rate:4 mm•min–1;(b)pouring temperature:1530 ℃,withdrawal rate:4 mm•min–1;(c)pouring temperature:1550 ℃,withdrawal rate:5 mm•min–1;(d)pouring temperature:1510 ℃,withdrawal rate:6 mm•min–1
表 1 DZ22B高温合金的化学成分(质量分数/%)
Table 1. Chemical composition of DZ22B superalloy(mass fraction/%)
C Cr Co W Nb Ti Al Hf B Ni 0.170 9.200 9.300 10.100 0.900 1.900 5.200 1.160 0.016 Bal. 表 2 熔融氧化铝粉末的化学成分(质量分数/%)
Table 2. Chemical composition of fused alumina powder(mass fraction/%)
Al2O3 Na2O SiO2 Fe2O3 99.74 0.23 0.01 0.02 表 3 陶瓷模壳的面层、过渡层及背层浆料的成分
Table 3. Composition of the surface layer,transition layer and backup layer slurry of the ceramic mold shell
Slurry Material Composition(mass fraction/%) Primary slurry Refractory:325 mesh fused alumina Refractory loading(76%) Liquids:silica sol,wetting agent,defoamer and high purity deionized water Total liquids(24%) Transition slurry Refractory:220 mesh fused alumina Refractory loading(70%) Liquids:silica sol,wetting agent,defoamer and high purity deionized water Total liquids(30%) Backup slurry Refractory:200 mesh fused alumina Tefractory loading(65%) Liquids:silica sol,wetting agent,defoamer and high purity deionized water Total liquids(35%) 表 4 4组模组对应的定向凝固工艺参数
Table 4. Directional solidification process parameters corresponding to the 4 groups of modules
Module Pouring temperature/℃ Withdrawal rate/mm•min–1 1 1550 4 2 1530 4 3 1550 5 4 1510 6 表 5 图3(a)中界面反应层与粘砂层的EDS分析结果(原子分数/ %)
Table 5. EDS analysis results of interface reaction layer and sand layer in Fig. 3(a)(atom fraction/%)
Layer O Al Si Hf Cr Interfacial reaction layer 61.68 34.57 3.56 0.17 0.02 Sand burning layer 66.52 30.06 3.42 — — 表 6 图3(b)中界面反应层与粘砂层的EDS分析结果(原子分数/ %)
Table 6. EDS analysis results of interface reaction layer and sand layer in Fig. 3(atom fraction/%)
Layer O Al Si Hf Cr Interfacial reaction layer 60.76 35.09 3.67 0.12 0.36 Sand burning layer 65.23 31.26 3.39 — 0.12 表 7 图4(a)中界面反应层与粘砂层的EDS分析结果(原子分数/ %)
Table 7. EDS analysis results of interface reaction layer and sand layer in Fig. 4(a)(atom fraction/%)
Position Co O W Hf Ti Cr Al Ni Si 1 9.11 3.50 3.57 0.29 2.42 11.24 9.96 59.91 — 2 — 61.93 — 2.04 — 0.59 39.77 — — 3 — 41.25 — 1.40 — 0.35 48.31 — 13.33 表 8 图4(b)中界面反应层与粘砂层的EDS分析结果(原子分数/ %)
Table 8. EDS analysis results of interface reaction layer and sand layer in Fig. 4(b)(atom fraction/%)
Position Co O W Hf Ti Cr Al Ni Si 1 — 45.45 — 2.31 — 14.47 24.62 — 13.15 2 — 57.59 — 0.89 — 6.21 16.16 — 14.81 3 9.15 3.49 3.61 0.23 2.52 9.65 12.43 58.92 — 表 9 与先前研究相比HfO2,Cr2O3和Al2O3的XPS峰的数值数据
Table 9. Numerical data of XPS peaks of HfO2,Cr2O3 and Al2O3 compared with previous studies
-
[1] KHAN M A,SUNDARRAJAN S,NATARAJAN S,et al. Oxidation and hot corrosion behavior of nickel-based superalloy for gas turbine applications[J]. Materials and manufacturing processes,2014,29(7):832-839. doi: 10.1080/10426914.2014.901530 [2] ZHANG S,ZHANG J,LOU L. Anisotropie creep rupture properties of a nickel-base single crystal superalloy at high temperature[J]. Journal of Materials Science & Technology,2011,27(2):107-112. [3] HAN G,YU J,SUN X,et al. Effect of threshold stress on anisotropic creep properties of single crystal nickel-base superalloy SRR99[J]. Journal of Materials Science & Technology,2012,28(5):439-445. [4] PATTNAIK S,KARUNAKAR D B,JHA P K. Developments in investment casting process—a review[J]. Journal of Materials Processing Technology,2012,212(11):2332-2348. doi: 10.1016/j.jmatprotec.2012.06.003 [5] ALABORT E,BARBA D,SULZER S,et al. Grain boundary properties of a nickel-based superalloy:characterisation and modelling[J]. Acta Materialia,2018,151:377-394. doi: 10.1016/j.actamat.2018.03.059 [6] ROSKOSZ S,ADAMIEC J. Methodology of quantitative evaluation of porosity,dendrite arm spacing and grain size in directionally solidified blades made of CMSX-6 nickel alloy[J]. Materials Characterization,2009,60(10):1120-1126. doi: 10.1016/j.matchar.2009.01.024 [7] LI Z,XIONG J,XU Q,et al. Deformation and recrystallization of single crystal nickel-based superalloys during investment casting[J]. Journal of Materials Processing Technology,2015,217:1-12. doi: 10.1016/j.jmatprotec.2014.10.019 [8] JONES S,YUAN C. Advances in shell moulding for investment casting[J]. Journal of Materials Processing Technology,2003,135(2/3):258-265. [9] WEI Q,ZHONG J,XU Z,et al. Microstructure evolution and mechanical properties of ceramic shell moulds for investment casting of turbine blades by selective laser sintering[J]. Ceramics International,2018,44(11):12088-12097. doi: 10.1016/j.ceramint.2018.03.227 [10] WANG H,SHANG G,LIAO J,et al. Experimental investigations and thermodynamic calculations of the interface reactions between ceramic moulds and Ni-based single-crystal superalloys:Role of solubility of Y in the LaAlO3 phase[J]. Ceramics International,2018,44(7):7667-7673. doi: 10.1016/j.ceramint.2018.01.192 [11] LI F,CHEN X,ZHAO Y,et al. Modification of ceramic shell facecoat for inhibition of sand burning defect on DZ22B directionally solidified blades[J]. The International Journal of Advanced Manufacturing Technology,2018,99(5-8):1771-1780. doi: 10.1007/s00170-018-2616-3 [12] 张科举. DZ22镍基高温合金强流脉冲电子束表面改性研究[D]. 天津: 中国民航大学, 2018.ZHANG K J. Surface modification of DZ22 nickel base superalloy by high current pulsed electron beam[D]. Civil Aviation University of China, 2018. [13] 郑运荣,蔡玉林,阮中慈,等. Hf和Zr在高温材料中作用机理研究[J]. 航空材料学报,2006,26(3):25-34.ZHEN Y R,CAI Y L,RUAN Z C,et al. Study on the action mechanism of Hf and Zr in high temperature materials[J]. Journal of Aeronautical Materials,2006,26(3):25-34.) [14] CHEN X,ZHOU Y,JIN T,et al. Effect of C and Hf contents on the interface reactions and wettability between a Ni3Al-based superalloy and ceramic mould material[J]. Journal of Materials Science & Technology,2016,32(2):177-181. [15] LI Q,SONG J,WANG D,et al. Effect of Cr,Hf and temperature on interface reaction between nickel melt and silicon oxide core[J]. Rare Metals,2011,30(1):405-409. [16] 郑亮,肖程波,张国庆,等. 高Cr铸造镍基高温合金 K4648与陶瓷型芯的界面反应研究[J]. 航空材料学报,2012,32(3):1283-1292.ZHENG L,XIAO C,ZHANG G Q,et al. Investigation of interfacial reaction between high Cr content cast nickel based superalloy K4648 and ceramic cores[J]. Journal of Aeronautical Materials,2012,32(3):1283-1292.) [17] XU Z,ZHONG J,SU X,et al. Microstructure evolution and mechanical behaviors of alumina-based ceramic shell for directional solidification of turbine blades[J]. Journal of Materials Research and Technology,2019,8(1):876-886. doi: 10.1016/j.jmrt.2018.05.023 [18] VENKAT Y,SINGH S,DAS D K,et al. Effect of fine alumina in improving refractoriness of ceramic shell moulds used for aeronautical grade Ni-base superalloy castings[J]. Ceramics International,2018,44(11):12030-12035. doi: 10.1016/j.ceramint.2018.03.197 [19] VALENZA F,MUOLO M L,PASSERONE A. Wetting and interactions of Ni- and Co-based superalloys with different ceramic materials[J]. Journal of Materials Science,2010,45(8):2071-2079. doi: 10.1007/s10853-009-3801-4 [20] 姜卫国,王莉,刘鸣,等. 1600~1620 ℃浇注温度下K441合金与模壳面层的界面反应[J]. 钢铁研究学报,2011,23(增刊 2):442-445.JIANG W G,WANG L,LIU M,et al. Interface reaction between K441 alloy and mold surface layer at casting temperature of 1600 -1620 ℃[J]. Journal of Iron and Steel Research,2011,23(增刊 2):442-445.) [21] 刘从庆,肖旋,郭永安,等. 碳对高温合金DZ417G定向凝固组织及持久性能的影响规律[J]. 沈阳理工大学学报,2017,36(5):77-82.LIU C Q,XIAO X,GUO Y A,et al. Effect of carbon on the directional solidification structure and durability of superalloy DZ417G[J]. Journal of Shen Yang Li Gong University,2017,36(5):77-82.) [22] 姚建省,唐定中,刘晓光,等. DD6单晶高温合金与陶瓷型壳的界面反应[J]. 航空材料学报,2015,35(6):1-7.YAO J S,TANG D Z,LIU X G,et al. Interface reaction between DD6 single crystal superalloy and ceramic shell[J]. Journal of Aeronautical Materials,2015,35(6):1-7.) [23] 刘亚男,杨伟. DZ22B高温合金相变过程及凝固组织转变研究[J]. 华东交通大学学报,2018,35(2):99-104.LIU Y A,YANG W. Study on phase transformation and solidification structure transformation of DZ22B superalloy[J]. Journal of East China Jiaotong University,2018,35(2):99-104.) [24] LI F,NI H,YANG L,et al. Investigation of fused alumina based-mold facecoats for DZ22B directionally solidified blades[J]. Materials,2019,12(4):606-621. doi: 10.3390/ma12040606 [25] 薛燕鹏,胡立杰,赵金乾,等. 吹砂,抛光及其电解腐蚀后处理对单晶高温合金表面组织和再结晶行为的影响[J]. 材料工程,2016,44(2):1-7.XUE Y P,HU L J,ZHAO J Q. Effects of grit blasting,polishing and their electro-etched post-treatment on surface microstructures and recrystallization behavior of single crystal superalloy[J]. Journal of Materials Engineering,2016,44(2):1-7.) [26] MENG J,JIN T,SUN X,et al. Effect of surface recrystallization on the creep rupture properties of a nickel-basesingle crystal superalloy[J]. Materials Science and Engineering:A,2010,527(23):6119-6122. doi: 10.1016/j.msea.2010.04.071 [27] BARRECA D,MILANOV A,FISCHER R A,et al. Hafnium oxide thin film grown by ALD:An XPS study[J]. Surface Science Spectra,2007,14(1):34-40. doi: 10.1116/11.20080401 [28] WITTHAUT M,CREMER R,REICHERT K,et al. Preparation of Cr2O3-Al2O3 solid solutions by reactive magnetron sputtering[J]. Microchimica Acta,2000,133(1/2/3/4):191-196. [29] HASSEL M,HEMMERICH I,KUHLENBECK H,et al. High resolution XPS study of a thin Cr2O3(111) film grown on Cr (110)[J]. Surface Science Spectra,1996,4(3):246-252. doi: 10.1116/1.1247795 [30] GÜNDÜZ M,ÇADIRLI E. Directional solidification of aluminium-copper alloys[J]. Materials Science and Engineering:A,2002,327(2):167-185. doi: 10.1016/S0921-5093(01)01649-5 [31] 叶大伦. 实用无机物热力学数据手册[M]. 冶金工业出版社, 1981.YE D L. Handbook of thermodynamic data of practical inorganic matter[M]. Metallurgical Industry Press, 1981. -