预拉伸对X2A66铝锂合金时效析出行为以及力学性能的影响

都昌兵 熊纯 官瑞春 江茫 唐启东 徐进军

都昌兵, 熊纯, 官瑞春, 江茫, 唐启东, 徐进军. 预拉伸对X2A66铝锂合金时效析出行为以及力学性能的影响[J]. 航空材料学报, 2020, 40(5): 29-37. doi: 10.11868/j.issn.1005-5053.2019.000183
引用本文: 都昌兵, 熊纯, 官瑞春, 江茫, 唐启东, 徐进军. 预拉伸对X2A66铝锂合金时效析出行为以及力学性能的影响[J]. 航空材料学报, 2020, 40(5): 29-37. doi: 10.11868/j.issn.1005-5053.2019.000183
Changbin DOU, Chun XIONG, Ruichun GUAN, Mang JIANG, Qidong TANG, Jinjun XU. Effect of pre-stretching on the precipitation behavior and mechanical properties of X2A66 aluminum alloy[J]. Journal of Aeronautical Materials, 2020, 40(5): 29-37. doi: 10.11868/j.issn.1005-5053.2019.000183
Citation: Changbin DOU, Chun XIONG, Ruichun GUAN, Mang JIANG, Qidong TANG, Jinjun XU. Effect of pre-stretching on the precipitation behavior and mechanical properties of X2A66 aluminum alloy[J]. Journal of Aeronautical Materials, 2020, 40(5): 29-37. doi: 10.11868/j.issn.1005-5053.2019.000183

预拉伸对X2A66铝锂合金时效析出行为以及力学性能的影响

doi: 10.11868/j.issn.1005-5053.2019.000183
基金项目: 省自然科学基金科教联合项目(2018JJ5066,2019JJ70032,2020JJ7077);省教育厅科学研究项目(18C1785)
详细信息
    通讯作者:

    徐进军(1986—),男,硕士,讲师,主要从事的研究方向为铝合金材料设计与检测,联系地址:湖南省长沙市天心区碧桂园公园壹号2栋(410002),E-mail:xujinjun1986@sohu.com

  • 中图分类号: TG146

Effect of pre-stretching on the precipitation behavior and mechanical properties of X2A66 aluminum alloy

  • 摘要: 采用力学性能测试与微观组织观察相结合的实验方法,研究不同预拉伸量对X2A66合金的时效析出行为演变以及力学性能生成规律。研究结果表明:时效前进行预拉伸处理能加速合金的时效响应速率;在增加T1相析出密度的同时减小T1相直径,但不改变T1相厚度。随着预拉伸量的增加,形变位错强化作用逐渐增加,T1相析出强化作用逐渐下降。5%的预拉伸量,能够使试样获得最佳的强塑性配比,屈服强度、抗拉强度以及伸长率分别为593 MPa、611 MPa以及10.7%。

     

  • 图  1  室温拉伸样品尺寸示意图

    Figure  1.  Size diagram of the tensile specimen at room temperature

    图  2  实验过程各阶段示意图

    Figure  2.  Schematic diagram showing treatment procedures of different stages during experimental process

    图  3  合金在四种不同时效制度下的时效硬度曲线

    Figure  3.  Age hardening curves of the alloy four different aging treatment conditions

    图  4  四种不同时效制度下室温拉伸测试结果 (a)力学性能;(b)应力应变曲线

    Figure  4.  Tensile test results of the studied alloy under four different aging conditions (a)mechanical properties;(b)stress strain curve

    图  5  四种不同时效制度下室温拉伸断口 (a)AA;(b)P1;(c)P2;(d)P3

    Figure  5.  Tensile fracture images of the alloy four different aging conditions (a)AA;(b)P1;(c)P2;(d)P3

    图  6  [110]Al轴T1,θ′,δ′析出相的透射电子衍射斑点示意图

    Figure  6.  Schematic electron diffraction patterns showing T1,θ′,δ′ precipitates reflections and typical double diffraction relative to the aluminum matrix in the incidence direction [110]Al

    图  7  四种不同时效制度下TEM暗场像照片(右上角为相应的SAED图) (a)AA;(b)P1;(c)P2;(d)P3

    Figure  7.  TEM DF images in [110]Al direction and the corresponding SAED patterns under four different aging conditions (a)AA;(b)P1;(c)P2;(d)P3

    图  8  四种不同时效制度下T1相相关参数的统计结果 (a)直径分布图;(b)析出密度和平均直径

    Figure  8.  Statistical results of T1 precipitate correlation parameters under four aging conditions (a)evolution of the diameter distribution of T1 precipitate;(b)statistical results of precipitation density and average diameter of T1 precipitate

    图  9  不同时效制度下X2A66合金的屈服强度组成分布

    Figure  9.  The main components distribution to the yield strength of X2A66 alloy under different aging systems

    图  10  T1相高分辨图 (a)AA;(b)P2

    Figure  10.  HRTEM images of the T1 precipitates (a)AA;(b)P2

    图  11  不同时效制度下处理后试样的晶界TEM图 (a)AA;(b)P1;(c)P2;(d)P3

    Figure  11.  TEM images of the specimens treated under four different ageing systems (a)AA;(b)P1;(c)P2;(d)P3

    表  1  X2A66合金的化学成分(质量分数/%)

    Table  1.   Chemical composition of the X2A66 alloy (mass fraction/%)

    CuLiMgMnZnZrTiAl
    3.551.510.420.280.50.110.028Bal.
    下载: 导出CSV
  • [1] 徐进军,康唯,都昌兵. 航空航天铝锂合金及其成形技术的研究现状和发展趋势[J]. 兵器材料科学与工程,2017,40(3):132-137.

    XU J J,KANG W,DOU C B. Present condition and development trends of Al-Li Alloys used for aeronautic and astronautic industry[J]. Ordnance Material Science and Engineering,2017,40(3):132-137.)
    [2] EL-ATY A A,XU Y,GUO X,et al. Strengthening mechanisms,deformation behavior,and anisotropic mechanical properties of Al-Li alloys:a review[J]. Journal of Advanced Research,2018,10(C):49-67.
    [3] XU J J,DENG Y L,CHEN J Q,et al. Effect of ageing treatments on the precipitation behavior and mechanical properties of Al-Cu-Li alloys[J]. Materials Science and Engineering:A,2020,773:1-10.
    [4] LI J F, LIU P L,CHEN Y L,et al. Microstructure and mechanical properties of Mg,Ag and Zn multi-microalloyed Al-(3.2-3.8)Cu-(1.0-1.4)Li alloys[J]. Transactions of Nonferrous Metals Society of China,2015,25(7):2103-2112. doi: 10.1016/S1003-6326(15)63821-3
    [5] 乔勇. X2A66铝锂合金固态相变及微观组织演变规律的研究[D].北京: 北京工业大学, 2016.

    QIAO Y. Study on solid phase transformation and microstructure evolution of X2A66 Al-Li alloy[D].Beijing: Beijing University of Technology, 2016
    [6] RODGERS B I,PRANGNELL P B. Quantification of the influence of increased pre-stretching on microstructure-strength relationships in the Al-Cu-Li alloy AA2195[J]. Acta Materialia,2016,108:55-67. doi: 10.1016/j.actamat.2016.02.017
    [7] GABLE B M,ZHU A W,CSONTOS A A,et al. The role of plastic deformation on the competitive microstructural evolution and mechanical properties of a novel Al-Li-Cu-X alloy[J]. Journal of Light Metals,2001,1(1):1-14. doi: 10.1016/S1471-5317(00)00002-X
    [8] 邓燕君,黄光杰,曹玲飞,等. 预变形对Al-Cu-Li-Mn-Zr合金的第二相析出及力学性能的影响[J]. 材料导报,2018,32(4):569-573.

    DENG Y J,HUANG G J,CAO L F,et al. Effect of pre-deformation on the precipitation behavior and mechanical property of Al-Cu-Li-Mn-Zr alloy[J]. Materials Reports,2018,32(4):569-573.)
    [9] TAO J,ZHANG L,WU G,et al. Effect of heat treatment on the microstructure and mechanical properties of extruded Al-4Cu-1Li-0.4Mg-0.4Ag-0.18Zr Alloy[J]. Materials Science and Engineering:A,2018,717:11-19. doi: 10.1016/j.msea.2018.01.063
    [10] LI H,HUANG D,KANG W,et al. Effect of different aging processes on the microstructure and mechanical properties of a novel Al-Cu-Li Alloy[J]. Journal of Materials Science & Technology,2016,32(10):1049-1053.
    [11] 程彬,郑子樵,范春平,等. 时效制度对新型Al-Cu-Li合金组织与性能的影响[J]. 中国有色金属学报,2014,32(4):926-933.

    CHEN B,ZHENG Z Q,FAN C P,et al. Effect of aging treatments on microstructures and properties of new Al-Cu-Li alloy[J]. The Chinese Journal of Nonferrous Metals,2014,32(4):926-933.)
    [12] 汪洁霞,刘晴,李劲风,等. 时效处理对新型超高强Al-Cu-Li-X合金薄板的力学性能和微观组织的影响[J]. 中南大学学报(自然科学版),2018,49(4):794-801.

    WANG J X,LIU Q,LI J F,et al. Effect of aging treatment on mechanical properties and microstructures of super-high strength Al-Cu-Li-X alloy[J]. Journal of Central South University (Science and Technology),2018,49(4):794-801.)
    [13] 叶志豪,朱瑞华,李劲风,等. 一种2050铝锂合金薄板的微观组织与力学性能[J]. 稀有金属材料与工程,2018,47(4):1192-1198.

    YE Z H,ZHU R H,LI J F,et al. Microstructure and mechanical properties of a 2050 Al-Li alloy sheet[J]. Rare Metal Materials and Engineering,2018,47(4):1192-1198.)
    [14] LI H Y,TANG Y,ZENG Z,et al. Effect of ageing time on strength and microstructures of an Al-Cu-Li-Zn-Mg-Mn-Zr Alloy[J]. Materials Science & Engineering,2008,498:314-320.
    [15] 高文理,曹亚雷,陆政,等. 2A66铝锂合金时效行为的研究[J]. 湖南大学学报(自然科学版),2016,43(6):16-21.

    GAO W L,CAO Y L,LU Z,et al. The aging behavior of aluminum-lithium alloy[J]. Journal of Hunan University (Natural Sciences),2016,43(6):16-21.)
    [16] JIANG B,CAO F,WANG H,et al. Effect of aging time on the microstructure evolution and mechanical property in an Al-Cu-Li alloy sheet[J]. Materials Science and Engineering:A,2019,740-741:157-164. doi: 10.1016/j.msea.2018.10.064
    [17] LIN Y,LU C,WEI C Y,et al. Effect of aging treatment on microstructures,tensile properties and intergranular corrosion behavior of Al-Cu-Li alloy[J]. Materials Characterization,2018,141:163-168. doi: 10.1016/j.matchar.2018.04.043
    [18] DORIN T,DESCHAMPS A,GEUSER F D,et al. Quantification and modelling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an Al-Cu-Li alloy[J]. Acta Materialia,2014,75(75):134-146.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  4823
  • HTML全文浏览量:  2247
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-24
  • 修回日期:  2020-08-10
  • 网络出版日期:  2020-09-10
  • 刊出日期:  2020-10-01

目录

    /

    返回文章
    返回