Effects of opening size and layering ratio on compression properties of composite laminates
-
摘要: 为研究开口尺寸和铺层比例对复材层合板压缩性能的影响,对三种开口尺寸和铺层的复合材料层合板进行压缩实验,并采用电阻应变计测量开口区应变。结果表明:开口尺寸越大,0°层比例越低,孔边应变水平越高,而应变分布梯度更小,从而大开口复合材料层合板的压缩强度值越低。随后,基于Puck失效准则,建立大开口复合材料层合板的渐进损伤分析模型,对层合板压缩失效过程进行模拟。数值模拟得到的孔边应变分布以及压缩强度与实验结果吻合良好,建立的数值分析模型能够比较有效地预测含大开口的复合材料层合板的压缩性能。Abstract: In order to study the effect of opening size and layering ratio on the compression performance, the compression experiments of composite laminates with three opening sizes and ply were carried out. The strains near the opening area were measured by resistance strain gauges. The experimental results show that the larger the opening size, the lower the 0° layer ratio, the higher the strain level at the hole edge, and the smaller the strain distribution gradient, thus the lower the compressive strength of composite laminates with large openings. Then, based on the Puck failure criterion, a progressive damage analysis model of large-opening composite laminates was established to simulate the compression failure process of laminates. The compressive strength and the strain distribution of the hole edge obtained by numerical simulations are in good agreement with the experimental results. The numerical analysis model can effectively predict the compression performance of composite laminates with large openings.
-
Key words:
- composite laminate /
- large openings /
- layering ratio /
- opening size /
- compressive strength
-
图 4 不同开口尺寸、铺层的的层合板孔边应变-应力曲线 (a)铺层A,d=2 mm;(b)铺层A,d=10 mm;(c)铺层B,d=2 mm;(d)铺层B,d=10 mm;(e)铺层C,d=2 mm;(f)铺层C,d=10 mm
Figure 4. Strain-stress curves at the orifice edges of laminated plates with different opening sizes and layer (a) layer A,d=2 mm;(b) layer A,d=10 mm;(c) layer B,d=2 mm;(d) layer B,d=10 mm;(e) layer C,d=2 mm;(f) layer C,d=10 mm
图 6 不同开口尺寸和铺层的复合材料层合板破坏形貌 (a)铺层A,D=25.4 mm;(b)铺层A,D=50 mm;(c)铺层A,D=75 mm;(d)铺层B,D=25.4 mm;(e)铺层B,D=50 mm;(f)铺层B,D=75 mm;(g)铺层C,D=25.4 mm;(h)铺层C,D=50 mm;(i)铺层C,D=75 mm;
Figure 6. Failure morphology of composite laminates with different opening sizes and lamination (a) layer A,D=25.4 mm;(b) layer A,D=50 mm;(c) layer A,D=75 mm;(d) layer B,D=25.4 mm;(e) layer B,D=50 mm;(f) layer B,D=75 mm;(g) layer C,D=25.4 mm;(h) layer C,D=50 mm;(i) layer C,D=75 mm;
表 1 M21C/IMA性能参数
Table 1. Properties parameters of M21C/IMA
E1/MPa E2/MPa G12/MPa ν12 XT/MPa XC/MPa YT/MPa 166000 8110 4140 0.319 2900 1140 70.5 YC/MPa SL/MPa EF/MPa ν12F β/MPa−3 G2C/(N·mm−1) G12C/(N·mm−1) 280 172 225000 0.2 1.4e−8 0.8 3.5 表 2 大开口复合材料层合板试件尺寸及数量
Table 2. Size and number of experimental pieces of large-open composite laminates
Layer h/mm L/mm W/mm D/mm L1/mm Number A/B/C 7.64 150 100 25.4 10 3 310 150 50 50 3 340 180 75 50 3 表 3 大开口层合板压缩强度预测值与实验结果对比
Table 3. Comparison of predicted compression strength of large open laminates with experimental results
Layer D/mm Test strength/MPa CV/% Predicted strength/MPa Error/% A 25.4 274 2.28 237 −13.5 50 203 1.42 204 0.493 75 174 5.78 173 −0.575 B 25.4 240 2.45 212 −11.7 50 201 1.02 184 −8.46 75 163 3.30 166 1.84 C 25.4 227 1.18 202 −11.0 50 173 1.56 171 −1.16 75 149 4.22 145 −2.69 -
[1] FINNEGAN K,KOOISTRA G,WADLEY H N G,et al. The compressive response of carbon fiber composite pyramidal truss sandwich cores[J]. International Journal of Materials Research,2007,98(12):1264-1272. doi: 10.3139/146.101594 [2] 倪楠楠,卞凯,夏璐,等. 先进复合材料在无人机上的应用[J]. 航空材料学报,2019,39(5):45-60. doi: 10.11868/j.issn.1005-5053.2018.000099NI N N,BIAN K,XIA L,et al. Application of advanced composite materials for UAV[J]. Journal of Aeronautical Materials,2019,39(5):45-60. doi: 10.11868/j.issn.1005-5053.2018.000099 [3] 徐坚,聂铭歧,王熙大,等. 2018年先进纤维复合材料研发热点回眸[J]. 科技导报,2019,37(1):91-98.XU J,NIE M Q,WANG X D,et al. Hot topics of advanced fiber-reinforced composites in 2018[J]. Science & Technology Review,2019,37(1):91-98. [4] 吴义涛,姚卫星. 含孔层合板剩余强度估算的应力场强法工程简化模型[J]. 南京航空航天大学学报,2016,48(4):551-557. doi: 10.16356/j.1005-2615.2016.04.016WU Y T,YAO W X. Simplified engineering model for predicting residual strength of notched laminates based on stress field intensity method[J]. Journal of Nanjing University of Aeronautics & Astronautics,2016,48(4):551-557. doi: 10.16356/j.1005-2615.2016.04.016 [5] CHANG F K,CHANG K Y. A progressive damage model for laminated composites containing stress concentrations[J]. Journal of Composite Materials,1987,21(9):834-855. doi: 10.1177/002199838702100904 [6] CHANG K Y,LIU S,CHANG F K. Damage tolerance of laminated composites containing an open hole and subjected to tensile loadings[J]. Journal of Composite Materials,1991,25(3):274-301. doi: 10.1177/002199839102500303 [7] HALLETT S R,WISNOM M R. Numerical investigation of progressive damage and the effect of layup in notched tensile tests[J]. Journal of Composite Materials,2006,40(14):1229-1245. doi: 10.1177/0021998305057432 [8] PHAM D C,SUN X S,TAN V B C,et al. Progressive failure analysis of scaled double-notched carbon/epoxy composite laminates[J]. International Journal of Damage Mechanics,2012,21(8):1154-1185. doi: 10.1177/1056789511430415 [9] 李彪,李亚智,丁瑞香. 基于物理机制的层合板失效分析方法[J]. 复合材料学报,2013,30(增刊):158-162. doi: 10.13801/j.cnki.fhclxb.2013.s1.004LI B,LI Y Z,DING R X. Physically based failure analysis method for laminated composites[J]. Acta Materiae Compositae Sinica,2013,30(增刊):158-162. doi: 10.13801/j.cnki.fhclxb.2013.s1.004 [10] 李彪,李亚智,杨帆. 考虑复合材料层合板就地效应的强度理论[J]. 航空学报,2014,35(11):3025-3036. doi: 10.7527/S1000-6893.2014.0101LI B,LI Y Z,YANG F. Theoretical methodology for laminated composite strength including insitu effect[J]. Acta Aeronautica et Astronautica Sinica,2014,35(11):3025-3036. doi: 10.7527/S1000-6893.2014.0101 [11] PINHO S T,DARVIZEH R,ROBINSON P,et al. Material and structural response of polymer-matrix fibre-reinforced composites[J]. Journal of Composite Materials,2012,46(19-20):2313-2341. doi: 10.1177/0021998312454478 [12] 许良,何懿,马少华,等. 含孔复合材料层合板拉伸失效分析[J]. 科学技术与工程,2018,18(34):242-247. doi: 10.3969/j.issn.1671-1815.2018.34.036XU L,HE Y,MA S H,et al. Tensile failure analysis of composite laminates with a hole[J]. Science Technology and Engineering,2018,18(34):242-247. doi: 10.3969/j.issn.1671-1815.2018.34.036 [13] 鲍宏琛,刘广彦. 纤维增强复合材料层合板缺口尺寸及形状效应数值模拟[J]. 复合材料学报,2017,34(5):987-995. doi: 10.13801/j.cnki.fhclxb.20160713.002BAO H C,LIU G Y. Numerical simulation on notch size and shape effects of fiber-reinforced composite laminates[J]. Acta Materiae Compositae Sinica,2017,34(5):987-995. doi: 10.13801/j.cnki.fhclxb.20160713.002 [14] 李亮,贾普荣,黄涛,等. 含切口损伤复合材料层合板拉伸失效行为研究[J]. 固体力学学报,2015,36(2):137-144. doi: 10.19636/j.cnki.cjsm42-1250/o3.2015.02.006LI L,JIA P R,HUANG T,et al. Study in the failure behavior of notched composite laminate under tensile load[J]. Chinese Journal of Solid Mechanics,2015,36(2):137-144. doi: 10.19636/j.cnki.cjsm42-1250/o3.2015.02.006 [15] 王刚,贾普荣,黄涛,等. 含切口复合材料层合板拉伸应变集中与失效分析[J]. 材料工程,2018,46(2):134-141. doi: 10.11868/j.issn.1001-4381.2016.000847WANG G,JIA P R,HUANG T,et al. Strain concentration and failure analysis of notched composite laminates under tensile loading[J]. Journal of Materials Engineering,2018,46(2):134-141. doi: 10.11868/j.issn.1001-4381.2016.000847 [16] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报,2019,33(增刊 1):145-148.ZHANG Q. Simulation of tensile behavior of composite laminate containing a hole with different ply angles[J]. Materials Reports,2019,33(Suppl 1):145-148. [17] LI X L,GAO W C,LIU W. Post-buckling progressive damage of CFRP laminates with a large-sized elliptical cutout subjected to shear loading[J]. Composite Structures,2015,128(3):313-321. [18] 黄河源,赵美英,王文智,等. 复合材料三维损伤模型在大开口结构强度预测中的应用[J]. 复合材料学报,2015,32(3):881-887. doi: 10.13801/j.cnki.fhclxb.20140919.001HUANG H Y,ZHAO M Z,WANG W Z,et al. Application of composite material 3D damage model in strength prediction of large opening structures[J]. Acta Materiae Compositae Sinica,2015,32(3):881-887. doi: 10.13801/j.cnki.fhclxb.20140919.001 [19] 陈建霖,励争,储鹏程. 大开口复合材料层合板强度破坏研究[J]. 力学学报,2016,48(6):1326-1333. doi: 10.6052/0459-1879-16-169CHEN J L,LI Z,CHU P C. Strength analysis of fiber reinforced composite laminates with big cutouts[J]. Chinese Journal of Theoretical and Applied Mechanics,2016,48(6):1326-1333. doi: 10.6052/0459-1879-16-169 [20] 王力立,付建伟,薛俊川,等. 连续大开口复合材料层合板拉伸力学行为研究[J]. 玻璃钢/复合材料,2019,46(3):26-31.WANG L L,FU J W,XUE J C,et al. Study on mechanical behavior of composite laminate with continuous large cutouts under tension[J]. Fiber Reinforced Plastics/Composites,2019,46(3):26-31. [21] 吴义韬,姚卫星,吴富强,等. 基于应变能耗散的复合材料层合板面内缺口强度分析CDM模型[J]. 复合材料学报,2014,31(4):1013-1021.WU Y T,YAO W X,WU F Q,et al. CDM model for analyzing intralaminar strength of notched composite laminates based on the dissipation of strain energy[J]. Acta Materiae Compositae Sinica,2014,31(4):1013-1021. [22] PUCK A,SCHURMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science and Technology,2002,62(12):1633-1662. [23] PUCK A,KOPP J,KNOPS M. Guidelines for the determination of the parameters in Puck’s action plane strength criterion[J]. Composites Science and Technology,2002,62(3):371-378. doi: 10.1016/S0266-3538(01)00202-0 [24] WIEGAND J,PETRINIC N,ELLIOTT B. An algorithm for determination of the fracture angle for the three-dimensional Puck matrix failure criterion for UD composites[J]. Composites Science and Technology,2008,68(12):2511-2517. doi: 10.1016/j.compscitech.2008.05.004 [25] HAHN H T,TSAI S W. Nonlinear elastic behavior of unidirectional composite laminate[J]. Journal of Composite Materials,1973,7(1):102-118. doi: 10.1177/002199837300700108 -