[1] |
谭慧俊,王子运,张悦. 形状记忆合金在飞行器进气道中的应用研究进展[J]. 南京航空航天大学学报,2019,51(4):438-448.TAN H J,WANG Z Y,ZHANG Y. Review of applications of shape memory alloy in inlets[J]. Journal of Nanjing University of Aeronautics& Astronautics,2019,51(4):438-448.)
|
[2] |
邹芹,党赏,李艳国,等. Fe-基形状记忆合金的研究进展[J]. 材料导报,2019,33(12):3955-3962.ZOU Q,DANG S,LI Y G,et al. Research progress of iron-based shape memory alloys:a review[J]. Materials Reports,2019,33(12):3955-3962.)
|
[3] |
WAEL A,HUSEYIN S. Superelasticity and functional fatigue of single crystalline FeNiCoAlTi iron-based shape memory alloy[J]. Materials and Design,2018,160:642-651. doi: 10.1016/j.matdes.2018.10.003
|
[4] |
OMORI T,ABE S,TANAKA Y,et al. Thermoelastic martensitic transformation and superelasticity in Fe-Ni-Co-Al-Nb-B polycrystalline alloy[J]. Scripta Materialia,2013,69(11/12):812-815. doi: 10.1016/j.scriptamat.2013.09.006
|
[5] |
TANAKA Y,HIMURO Y,KAINUMA R,et al. Ferrous polycrystalline shape-memory alloy showing huge superelasticity[J]. Science,2010,327:1488-1490. doi: 10.1126/science.1183169
|
[6] |
VOLLMER M,KROOΒ P,KARAMAN I,et al. On the effect of titanium on quenching sensitivity and pseudoelastic response in Fe-Mn-Al-Ni-base shape memory alloy[J]. Scripta Materialia,2017,126:20-23. doi: 10.1016/j.scriptamat.2016.08.002
|
[7] |
VOLLMER M,SEGEL C,KROOΒ P,et al. On the effect of gamma phase formation on the pseudoelastic performance of polycrystalline Fe-Mn-Al-Ni shape memory alloys[J]. Scripta Materialia,2015,108:23-26. doi: 10.1016/j.scriptamat.2015.06.013
|
[8] |
HUADONG F,HUIMIN Z,YIXIONG Z,et al. Enhancement of superelasticity in Fe-Ni-Co-Based shape memory alloys by microstructure and texture control[J]. Procedia Engineering,2017,207:1505-1510. doi: 10.1016/j.proeng.2017.10.1084
|
[9] |
TSENG L W,MA J,VOLLMER M,et al. Effect of grain size on the superelastic response of a FeMnAlNi polycrystalline shape memory alloy[J]. Scripta Materialia,2016,125:68-72. doi: 10.1016/j.scriptamat.2016.07.036
|
[10] |
OMORI T,IWAIZAKO H,KAINUMA R. Abnormal grain growth induced by cyclic heat treatment in Fe-Mn-Al-Ni superelastic alloy[J]. Materials and Design,2016,101:263-269. doi: 10.1016/j.matdes.2016.04.011
|
[11] |
OMORI T,KUSAMA T,KAWATA S,et al. Abnormal grain growth induced by cyclic heat treatment[J]. Science,2013,341:1500-1502. doi: 10.1126/science.1238017
|
[12] |
OZCANA H,MA J,WANG S J,et al. Effects of cyclic heat treatment and aging on superelasticity in oligocrystalline Fe-Mn-Al-Ni shape memory alloy wires[J]. Scripta Materialia,2017,134:66-70. doi: 10.1016/j.scriptamat.2017.02.023
|
[13] |
SAGARADZEN V V,SHABASHOV V A,KATAEVA N V,et al. The anomalous diffusion processes “dissolution-precipitation” of the γ' phase Ni3Al in an Fe-Ni-Al alloy during low-temperature deformation[J]. Materials Letters,2016,172:207-210. doi: 10.1016/j.matlet.2015.11.078
|
[14] |
渠桂丽,彭文屹,陈朝霞,等. 时效时间对 FeNiCoAlNbB 合金组织和性能的影响[J]. 金属热处理,2015,40(3):109-114.QU G L,PENG W Y,CHEN Z X,et al. Influence of aging time on microstructure and mechanical properties of FeNiCoAlNbB alloy[J]. Heat Treatment of Metals,2015,40(3):109-114.)
|
[15] |
CHEN Z X,PENG W Y. Fe-Ni-Al-Ta polycrystalline shape memory alloys showing excellent superelasticity[J]. Functional Materials Letters,2020,13(1):1950096-1-4.
|
[16] |
BALDAN A. Progress in ostwald ripening theories and their applications to the γ'-precipitates in nickel-base superalloys:Part Ⅱ Nickel-base superalloys[J]. Journal of Materials Science,2002,37(12):2397-2400.
|
[17] |
徐祖耀, 江伯鸿, 杨大智, 等. 形状记忆材料[M]. 上海: 上海交通大学出版社, 2000.XU Z Y, JIANG B H, YANG D Z, et al. Shape memory materials[M]. Shanghai: Shanghai Jiao Tong University Press, 2000.
|
[18] |
MA J,KOCKAR B,EVIRGEN A,et al. Shape memory behavior and tension–compression asymmetry of a FeNiCoAlTa single-crystalline shape memory alloy[J]. Acta Materialia,2012,60(5):2186-2195. doi: 10.1016/j.actamat.2011.12.047
|