时效时间对铸态Fe56.5Ni30Al10.5Nb3形状记忆合金组织与性能的影响

陈朝霞 彭文屹

陈朝霞, 彭文屹. 时效时间对铸态Fe56.5Ni30Al10.5Nb3形状记忆合金组织与性能的影响[J]. 航空材料学报, 2020, 40(5): 13-19. doi: 10.11868/j.issn.1005-5053.2020.000015
引用本文: 陈朝霞, 彭文屹. 时效时间对铸态Fe56.5Ni30Al10.5Nb3形状记忆合金组织与性能的影响[J]. 航空材料学报, 2020, 40(5): 13-19. doi: 10.11868/j.issn.1005-5053.2020.000015
Zhaoxia CHEN, Wenyi PENG. Effect of aging time on microstructure and properties of as-cast Fe56.5Ni30Al10.5Nb3 shape memory alloy[J]. Journal of Aeronautical Materials, 2020, 40(5): 13-19. doi: 10.11868/j.issn.1005-5053.2020.000015
Citation: Zhaoxia CHEN, Wenyi PENG. Effect of aging time on microstructure and properties of as-cast Fe56.5Ni30Al10.5Nb3 shape memory alloy[J]. Journal of Aeronautical Materials, 2020, 40(5): 13-19. doi: 10.11868/j.issn.1005-5053.2020.000015

时效时间对铸态Fe56.5Ni30Al10.5Nb3形状记忆合金组织与性能的影响

doi: 10.11868/j.issn.1005-5053.2020.000015
基金项目: 国家自然科学基金(51461030);江西省教育厅科学技术研究项目(GJJ160481)
详细信息
    通讯作者:

    彭文屹(1968—),女,博士,教授,主要研究方向为金属功能材料、材料表面改性,E-mail:wypengtougao@163.com

  • 中图分类号: TG166

Effect of aging time on microstructure and properties of as-cast Fe56.5Ni30Al10.5Nb3 shape memory alloy

  • 摘要: 研制一种无Co添加的Fe56.5Ni30Al10.5Nb3(atom fraction/%)合金,在制备中直接对铸态合金进行固溶和650 ℃下的时效处理。利用扫描电子显微镜(SEM)和X射线衍射仪(XRD)分析合金的组织和物相,同时对其进行硬度测试、抗压强度测试、超弹性测试及电子背散射衍射(EBSD)测试。结果表明:时效时间处于0~95 h的范围时,合金内均能析出纳米尺寸的γ′相和细小的β相,在室温都展现出超弹性,最大超弹性应变达10.62%;γ′相在晶内析出,在时效时间为70 h时分布最密集,时间超过70 h后进入长大阶段;β相在晶内和晶界都能析出,析出量随时效时间的延长而增加;β相的析出能促进硬度的增加,但其在晶界的生成对强度不利;随着时效时间的延长,合金硬度持续增加,抗压强度和超弹性应变均先增加后减小,且均在时间为70 h时取得最大值;合金内部纳米尺寸的γ′析出相及较强的{100}<001>织构对其超弹性影响较大。

     

  • 图  1  Fe56.5Ni30Al10.5Nb3合金经650 ℃时效不同时间后在室温下的SEM图像 (a)20 h;(b)45 h;(c)70 h;(b)90 h

    Figure  1.  SEM images of Fe56.5Ni30Al10.5Nb3 alloy at room temperature aged at 650 ℃ for different time (a)20 h;(b)45 h;(c)45 h;(d)90 h

    图  2  650 ℃时效20 h的合金在低倍下的组织形貌(a)及Nb元素面分布图(b)

    Figure  2.  Microstructure of the alloy aged at 650 ℃ for 20 h at low magnification (a) and Nb surface distribution diagram (b)

    图  3  合金经固溶及650 ℃下时效20 h,45 h,70 h,95 h后在室温下的XRD图谱

    Figure  3.  XRD patterns of the alloy at room temperature after solution treatment and aged at 650 ℃ for 20 h,45 h,70 h and 95 h.

    图  4  合金硬度(a)和抗压强度(b)随时效时间的变化

    Figure  4.  Changes of hardness(a) and compressive strength (b) of the alloy with aging time

    图  5  合金经650 ℃下时效不同时间后在室温下的应力-应变曲线 (a)20 h;(b)45 h;(c)70 h;(b)90 h

    Figure  5.  Stress-strain curves of the alloy at room temperature aged at 650 ℃ for different time (a)20 h;(b)45 h;(c)45 h;(d)90 h

    图  6  650 ℃下时效70 h合金内晶粒的{100}极图(a)、反极图(b)和ODF截面图(c)

    Figure  6.  {100} pole figure(a),inverse pole figure(b)and ODFs for texture of the alloy aged at aged at 650 ℃ for 70 h

  • [1] 谭慧俊,王子运,张悦. 形状记忆合金在飞行器进气道中的应用研究进展[J]. 南京航空航天大学学报,2019,51(4):438-448.

    TAN H J,WANG Z Y,ZHANG Y. Review of applications of shape memory alloy in inlets[J]. Journal of Nanjing University of Aeronautics& Astronautics,2019,51(4):438-448.)
    [2] 邹芹,党赏,李艳国,等. Fe-基形状记忆合金的研究进展[J]. 材料导报,2019,33(12):3955-3962.

    ZOU Q,DANG S,LI Y G,et al. Research progress of iron-based shape memory alloys:a review[J]. Materials Reports,2019,33(12):3955-3962.)
    [3] WAEL A,HUSEYIN S. Superelasticity and functional fatigue of single crystalline FeNiCoAlTi iron-based shape memory alloy[J]. Materials and Design,2018,160:642-651. doi: 10.1016/j.matdes.2018.10.003
    [4] OMORI T,ABE S,TANAKA Y,et al. Thermoelastic martensitic transformation and superelasticity in Fe-Ni-Co-Al-Nb-B polycrystalline alloy[J]. Scripta Materialia,2013,69(11/12):812-815. doi: 10.1016/j.scriptamat.2013.09.006
    [5] TANAKA Y,HIMURO Y,KAINUMA R,et al. Ferrous polycrystalline shape-memory alloy showing huge superelasticity[J]. Science,2010,327:1488-1490. doi: 10.1126/science.1183169
    [6] VOLLMER M,KROOΒ P,KARAMAN I,et al. On the effect of titanium on quenching sensitivity and pseudoelastic response in Fe-Mn-Al-Ni-base shape memory alloy[J]. Scripta Materialia,2017,126:20-23. doi: 10.1016/j.scriptamat.2016.08.002
    [7] VOLLMER M,SEGEL C,KROOΒ P,et al. On the effect of gamma phase formation on the pseudoelastic performance of polycrystalline Fe-Mn-Al-Ni shape memory alloys[J]. Scripta Materialia,2015,108:23-26. doi: 10.1016/j.scriptamat.2015.06.013
    [8] HUADONG F,HUIMIN Z,YIXIONG Z,et al. Enhancement of superelasticity in Fe-Ni-Co-Based shape memory alloys by microstructure and texture control[J]. Procedia Engineering,2017,207:1505-1510. doi: 10.1016/j.proeng.2017.10.1084
    [9] TSENG L W,MA J,VOLLMER M,et al. Effect of grain size on the superelastic response of a FeMnAlNi polycrystalline shape memory alloy[J]. Scripta Materialia,2016,125:68-72. doi: 10.1016/j.scriptamat.2016.07.036
    [10] OMORI T,IWAIZAKO H,KAINUMA R. Abnormal grain growth induced by cyclic heat treatment in Fe-Mn-Al-Ni superelastic alloy[J]. Materials and Design,2016,101:263-269. doi: 10.1016/j.matdes.2016.04.011
    [11] OMORI T,KUSAMA T,KAWATA S,et al. Abnormal grain growth induced by cyclic heat treatment[J]. Science,2013,341:1500-1502. doi: 10.1126/science.1238017
    [12] OZCANA H,MA J,WANG S J,et al. Effects of cyclic heat treatment and aging on superelasticity in oligocrystalline Fe-Mn-Al-Ni shape memory alloy wires[J]. Scripta Materialia,2017,134:66-70. doi: 10.1016/j.scriptamat.2017.02.023
    [13] SAGARADZEN V V,SHABASHOV V A,KATAEVA N V,et al. The anomalous diffusion processes “dissolution-precipitation” of the γ' phase Ni3Al in an Fe-Ni-Al alloy during low-temperature deformation[J]. Materials Letters,2016,172:207-210. doi: 10.1016/j.matlet.2015.11.078
    [14] 渠桂丽,彭文屹,陈朝霞,等. 时效时间对 FeNiCoAlNbB 合金组织和性能的影响[J]. 金属热处理,2015,40(3):109-114.

    QU G L,PENG W Y,CHEN Z X,et al. Influence of aging time on microstructure and mechanical properties of FeNiCoAlNbB alloy[J]. Heat Treatment of Metals,2015,40(3):109-114.)
    [15] CHEN Z X,PENG W Y. Fe-Ni-Al-Ta polycrystalline shape memory alloys showing excellent superelasticity[J]. Functional Materials Letters,2020,13(1):1950096-1-4.
    [16] BALDAN A. Progress in ostwald ripening theories and their applications to the γ'-precipitates in nickel-base superalloys:Part Ⅱ Nickel-base superalloys[J]. Journal of Materials Science,2002,37(12):2397-2400.
    [17] 徐祖耀, 江伯鸿, 杨大智, 等. 形状记忆材料[M]. 上海: 上海交通大学出版社, 2000.

    XU Z Y, JIANG B H, YANG D Z, et al. Shape memory materials[M]. Shanghai: Shanghai Jiao Tong University Press, 2000.
    [18] MA J,KOCKAR B,EVIRGEN A,et al. Shape memory behavior and tension–compression asymmetry of a FeNiCoAlTa single-crystalline shape memory alloy[J]. Acta Materialia,2012,60(5):2186-2195. doi: 10.1016/j.actamat.2011.12.047
  • 加载中
图(6)
计量
  • 文章访问数:  3752
  • HTML全文浏览量:  1890
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-19
  • 修回日期:  2020-08-20
  • 网络出版日期:  2020-08-20
  • 刊出日期:  2020-10-01

目录

    /

    返回文章
    返回