发动机材料高周疲劳P-S-N曲线优化处理方法

许巍 陈新 李旭东 钟斌 赵延广 陶春虎

许巍, 陈新, 李旭东, 钟斌, 赵延广, 陶春虎. 发动机材料高周疲劳P-S-N曲线优化处理方法[J]. 航空材料学报, 2020, 40(5): 96-103. doi: 10.11868/j.issn.1005-5053.2020.000016
引用本文: 许巍, 陈新, 李旭东, 钟斌, 赵延广, 陶春虎. 发动机材料高周疲劳P-S-N曲线优化处理方法[J]. 航空材料学报, 2020, 40(5): 96-103. doi: 10.11868/j.issn.1005-5053.2020.000016
Wei XU, Xin CHEN, Xudong LI, Bin ZHONG, Yanguang ZHAO, Chunhu TAO. Optimized processing method of P-S-N curves for high cycle fatigue of aero-engine materials[J]. Journal of Aeronautical Materials, 2020, 40(5): 96-103. doi: 10.11868/j.issn.1005-5053.2020.000016
Citation: Wei XU, Xin CHEN, Xudong LI, Bin ZHONG, Yanguang ZHAO, Chunhu TAO. Optimized processing method of P-S-N curves for high cycle fatigue of aero-engine materials[J]. Journal of Aeronautical Materials, 2020, 40(5): 96-103. doi: 10.11868/j.issn.1005-5053.2020.000016

发动机材料高周疲劳P-S-N曲线优化处理方法

doi: 10.11868/j.issn.1005-5053.2020.000016
详细信息
    通讯作者:

    许巍(1983—),男,博士,高级工程师,主要从事材料和结构的疲劳断裂研究,E-mail:wxu621@163.com

  • 中图分类号: O346.4

Optimized processing method of P-S-N curves for high cycle fatigue of aero-engine materials

  • 摘要: 材料的高周疲劳P-S-N曲线是发动机强度设计的重要依据。根据航空发动机材料高周疲劳P-S-N曲线的数据处理要求,提出拟合模型的选用判据以及中/高寿命区之间临界点的判别方法,并基于此进一步提出高周疲劳P-S-N曲线的优化处理方法;随后以航空发动机中常用的两种钛合金材料为对象,利用本方法实现批处理,获得不同条件下的高周疲劳P-S-N曲线,最后比较与传统方法在处理时间上的差异。结果表明:该数据处理方法不但适用于常规高周疲劳性能数据处理,还适用于超高周疲劳性能数据处理,其处理效率显著提升。

     

  • 图  1  高周疲劳性能数据的批处理流程图

    Figure  1.  Flow chart of batch processing of high cycle fatigue data.

    图  2  高周疲劳试样的形状和尺寸图 (a)旋转弯曲疲劳试样;(b)轴向高周疲劳试样

    Figure  2.  Size and shape of fatigue specimen for comparison(a)rotating-bending specimen;(b)axial-loading specimen.

    图  3  高周疲劳的P-S-N曲线的处理结果 (a)TC17钛合金200 ℃光滑试样(Kt = 1)旋转弯曲疲劳曲线;(b)TA11钛合金光滑试样(Kt = 1)室温轴向疲劳曲线

    Figure  3.  Processing results of high cycle fatigue P-S-N curves (a)200 ℃ axial-loading fatigue curves of TC17 Ti-alloy specimens;(b)RT rotating-bending fatigue curves of TA11 Ti-alloy specimens

    图  4  实验数据处理时间的对比

    Figure  4.  Comparison of process time of testing data

    表  1  TC17合金旋转弯曲疲劳的P-S-N曲线的拟合参数结果

    Table  1.   Fitting parameter results of P-S-N curves of rotating-bending fatigue testing of TC17 specimens

    No.γ and PB1B2B3r
    1Medium S-N80.1385926.6505300.806514
    2γ = 50%,
    p = 97.72%(–2σ
    85.9187929.3122100.952211
    3γ = 95%,
    p = 97.72%(–2σ
    77.9312326.6425000.951975
    4γ = 50%,
    p = 99.87%(–3σ
    87.9537329.8409500.949756
    5γ = 50%,
    p = 99.87%(–3σ
    80.6180827.3547200.948715
    下载: 导出CSV

    表  2  TA11合金轴向高周疲劳的P-S-N曲线的拟合参数结果

    Table  2.   Fitting parameter results of P-S-N curves of axial-loading fatigue testing of TA11 specimens

    No.γ and PB1B2B3r
    1Medium S-N13.539693.974785418.2210.861634
    2γ = 50%,
    p = 97.72%(–2σ
    8.719702.090136428.5900.95047
    3γ = 95%,
    p = 97.72%(–2σ
    10.185072.944358405.6060.970222
    4γ = 50%,
    p = 99.87%(–3σ
    10.024832.906688411.9610.971121
    5γ = 50%,
    p = 99.87%(–3σ
    12.727284.326674378.0810.983685
    下载: 导出CSV
  • [1] 李勋,张东明,姜睿. 基于P-S-N曲线的三参数法估计叶片最低疲劳极限的实践研究[J]. 燃气涡轮试验与研究,2011,24(3):24-26.

    LI X,ZHANG D M,JIANG R. Practical research on three-parameter estimation method of minimum blade fatigue limit based on P-S-N curve[J]. Gas Turbine Experiment and Research,2011,24(3):24-26.)
    [2] LING J,PAN J. A maximum likelihood method for estimating P-S-N curves[J]. International Journal of Fatigue,1997,19(5):415-419. doi: 10.1016/S0142-1123(97)00037-6
    [3] POLLAK R D,PALAZOTTO A N. A comparison of maximum likelihood models for fatigue strength characterization in materials exhibiting a fatigue limit[J]. Probabilistic Engineering Mechanics,2009,24(2):236-241. doi: 10.1016/j.probengmech.2008.06.006
    [4] 谢金标,姚卫星. 建立P-S-N 曲线的双加权最小二乘法[J]. 实验力学,2010,25(5):611-616.

    XIE J B,YAO W X. Double weighted least square method for P-S-N curve regression[J]. Journal of Experimental Mechanics,2010,25(5):611-616.)
    [5] GAO J,AN Z,LIU B. A new method for obtaining P-S-N curves under the condition of small sample[J]. Journal of Risk and Reliability,2017,231(2):130-137.
    [6] 傅惠民,刘成瑞. S-N曲线和P-S-N曲线小子样测试方法[J]. 机械强度,2006,28(4):552-555. doi: 10.3321/j.issn:1001-9669.2006.04.016

    FU H M,LIU C R. Small sample test method for S-N and P-S-N curves[J]. Journal of Mechanical Strength,2006,28(4):552-555.) doi: 10.3321/j.issn:1001-9669.2006.04.016
    [7] XIE L,LIU J,WU N,et al. Backwards statistical inference method for P-S-N curve fitting with small-sample experiment data[J]. International Journal of Fatigue,2014,63:62-67. doi: 10.1016/j.ijfatigue.2014.01.006
    [8] TAN X. P-S-N Curve fitting method based on sample aggregation principle[J]. Journal of Failure Analysis and Prevention,2019,19(1):270-278. doi: 10.1007/s11668-019-00586-1
    [9] BUCAR T,NAGODE M,FAJDIGA M. A neural network approach to describing the scatter of S-N curves[J]. International Journal of Fatigue,2006,28:311-323. doi: 10.1016/j.ijfatigue.2005.08.002
    [10] LEONETTI D,MALJAARS J,SNIJDER H H B. Fitting fatigue test data with a novel S-N curve using frequentist and Bayesian inference[J]. International Journal of Fatigue,2017,105:128-143. doi: 10.1016/j.ijfatigue.2017.08.024
    [11] GUIDA M,PENTA F. A Bayesian analysis of fatigue data[J]. Structural Safety,2010,32(1):64-76. doi: 10.1016/j.strusafe.2009.08.001
    [12] 韩希鹏,许超,段作祥,等. 高周疲劳曲线的等效应力法[J]. 航空材料学报,2003,23(3):53-57. doi: 10.3969/j.issn.1005-5053.2003.03.013

    HAN X P,XU C,DUAN Z X,et al. Modified equivalent stress model for high cyclic fatigue curves[J]. Journal of Aeronautical Materials,2003,23(3):53-57.) doi: 10.3969/j.issn.1005-5053.2003.03.013
    [13] 高镇同, 熊峻江. 疲劳可靠性[M]. 北京: 北京航空航天大学出版社, 2000.

    GAO Z T, XIONG J J. Reliability in fatigue[M]. Beijing: Beihang University Press, 2000.
    [14] 洪友士,孙成奇,刘小龙. 合金材料超高周疲劳的机理与模型综述[J]. 力学进展,2018,48:201801. doi: 10.6052/1000-0992-17-002

    HONG Y S,SUN C Q,LIU X L. A review on mechanisms and models for very-high-cycle fatigue of metallic materials[J]. Advances in Mechanics,2018,48:201801.) doi: 10.6052/1000-0992-17-002
    [15] STANZL-TSCHEGG S. Very high cycle fatigue measuring techniques[J]. International Journal of Fatigue,2014,60:2-17. doi: 10.1016/j.ijfatigue.2012.11.016
    [16] 许巍,赵延广,钟斌,等. 基于振动台的TA11钛合金超高频疲劳实验和验证[J]. 航空材料学报,2019,39(4):86-92. doi: 10.11868/j.issn.1005-5053.2019.000009

    XU W,ZHAO Y G,ZHONG B,et al. Ultra-high frequency fatigue testing approach and verification of TA11 Ti-alloy based on electrodynamic shaker[J]. Journal of Aeronautical Materials,2019,39(4):86-92.) doi: 10.11868/j.issn.1005-5053.2019.000009
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  3662
  • HTML全文浏览量:  2071
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-03
  • 修回日期:  2020-04-28
  • 网络出版日期:  2020-08-28
  • 刊出日期:  2020-10-01

目录

    /

    返回文章
    返回