超音速火焰喷涂CoCrAlYSi-hBN涂层组织和性能

张昂 王长亮 王天颖 高俊国 郭孟秋 崔永静 田浩亮

张昂, 王长亮, 王天颖, 高俊国, 郭孟秋, 崔永静, 田浩亮. 超音速火焰喷涂CoCrAlYSi-hBN涂层组织和性能[J]. 航空材料学报, 2020, 40(5): 53-59. doi: 10.11868/j.issn.1005-5053.2020.000021
引用本文: 张昂, 王长亮, 王天颖, 高俊国, 郭孟秋, 崔永静, 田浩亮. 超音速火焰喷涂CoCrAlYSi-hBN涂层组织和性能[J]. 航空材料学报, 2020, 40(5): 53-59. doi: 10.11868/j.issn.1005-5053.2020.000021
Ang ZHANG, Changliang WANG, Tianying WANG, Junguo GAO, Mengqiu GUO, Yongjing CUI, Haoliang TIAN. The microstructure and properties of CoCrAlYSi-hBN coating prepared by HVOF[J]. Journal of Aeronautical Materials, 2020, 40(5): 53-59. doi: 10.11868/j.issn.1005-5053.2020.000021
Citation: Ang ZHANG, Changliang WANG, Tianying WANG, Junguo GAO, Mengqiu GUO, Yongjing CUI, Haoliang TIAN. The microstructure and properties of CoCrAlYSi-hBN coating prepared by HVOF[J]. Journal of Aeronautical Materials, 2020, 40(5): 53-59. doi: 10.11868/j.issn.1005-5053.2020.000021

超音速火焰喷涂CoCrAlYSi-hBN涂层组织和性能

doi: 10.11868/j.issn.1005-5053.2020.000021
基金项目: 航空发动机机及燃气轮机关键摩擦副长寿命高耐磨复合功能涂层摩擦学原理与制造技术基础(2017-VII-0013-0110)
详细信息
    通讯作者:

    王长亮(1981—),男,高级工程师,主要从事热喷涂材料和工艺研究,联系地址:北京市海淀区温泉镇环山村8号北京航空材料研究院(100095),E-mail:cliangwang@126.com

  • 中图分类号: TG174.442

The microstructure and properties of CoCrAlYSi-hBN coating prepared by HVOF

  • 摘要: 采用超音速火焰喷涂(HVOF)方法制备CoCrAlYSi-hBN涂层,通过对涂层显微组织、硬度和结合强度的测试,探讨喷涂工艺参数(燃气流量和喷涂距离)的变化对涂层组织与性能的影响。采用扫描电镜(SEM)和能谱仪(EDS)研究涂层的形貌、微观组织及涂层成分,采用显微硬度计和拉伸试验机测试涂层的显微硬度和结合强度。研究结果表明:随着燃气流量的增加,喷涂粉末粒子熔化更充分,涂层中孔隙和氮化硼含量呈降低趋势,涂层硬度增加,结合强度先升高后降低;随喷涂距离增加,氧化物夹杂增多,涂层硬度呈现增大的趋势,结合强度先增加后降低。喷涂距离为225 mm时,涂层孔隙率和氮化硼含量很低,导致其高的硬度和结合强度。

     

  • 图  1  CoCrAlYSi-hBN粉末形貌

    Figure  1.  Morphology of CoCrAlYSi-hBN powder

    图  2  不同喷涂工艺参数下涂层金相显微组织 (a)1#;(b)2#;(c)3#;(d)4#;(e)5#;(f)6#

    Figure  2.  Microstructure of CoCrAlYSi-hBN coatings under different spraying parameters (a)1#;(b)2#;(c)3#;(d)4#;(e)5#;(f)6#

    图  4  5#喷涂参数下涂层蓝色区域能谱

    Figure  4.  EDS testing of coating dark area under spraying parameter 5#

    图  5  涂层硬度与喷涂工艺参数(燃气流量和喷涂距离)的关系

    Figure  5.  Relationships between coating hardness and coating process parameters (gas flow and spray distance)

    图  3  涂层中(hBN+孔隙)含量(a)和氧化物含量(b)与喷涂工艺的关系

    Figure  3.  Relationships between the content of (hBN+pore) (Z axis) and coating process parameters(a)and relationships between the content of oxides (Z axis) and coating process parameters(b)

    图  6  涂层结合强度(Z轴)与喷涂工艺参数(X轴:燃气流量和Y轴:喷涂距离)的关系

    Figure  6.  Relationships between coating bonding strength(Z axis) and coating process parameters(X axis:gas flow and Y axis:spray distance)

    表  1  CoCrAlYSi-hBN粉末化学成分(质量分数/%)

    Table  1.   Chemical composition and content of the CoCrAlYSi-hBN powder (mass fraction/%)

    CoCrAlYSihBN
    Bal.2550.271.7515
    下载: 导出CSV

    表  2  喷涂工艺参数

    Table  2.   Spraying parameters

    ProceduresSpraying parameters
    O2 flowrate/(L•min−1C3H8 flowrate/(L•min−1Air flowrate/(L•min−1Feed pressure /kPaSpray distance /mm
    1#25254015.85275
    2#2828275
    3#2828225
    4#2828325
    5#3232275
    6#3636275
    下载: 导出CSV

    表  3  不同喷涂工艺参数下涂层(孔隙率+hBN)及氧化物含量

    Table  3.   (Pores+hBN) and oxides content of CoCrAlYSi-hBN coatings under different spraying parameters

    ProceduresContent/%
    (Pores+hBN)Oxides
    1#3.00 5.62
    2#3.61 8.61
    3#0.21 8.11
    4#2.0910.35
    5#1.8312.09
    6#1.6814.79
    下载: 导出CSV

    表  4  能谱分析得到的不同工艺条件下的涂层中各元素的质量分数

    Table  4.   Mass fraction of element of CoCrAlYSi-hBN coating under various spraying parametersby EDS analysis

    ProceduresMass fraction of element/%
    COAlSiCrCo
    1# 8.973.235.091.8525.9754.95
    2# 3.965.546.552.0834.9946.87
    3#17.384.894.261.5423.1048.83
    4# 4.766.666.512.3334.9244.81
    5# 7.516.806.362.2333.5043.61
    6# 6.727.395.131.6025.1154.05
    下载: 导出CSV

    表  5  涂层显微硬度测试结果

    Table  5.   Coating microhardness with different spraying process

    Prodecures HV0.3Average
    12345678910
    1#284.6334.9255.0300.8332.4289.2284.0323.7274.6347.6302.7
    2#282.7327.6334.9298.7361.9291.2335.7352.0328.4298.0321.1
    3#472.7408.4501.5464.5431.5425.6405.1385.1451.4377.1432.3
    4#322.9408.4280.2382.1476.9383.1433.9347.6422.0308.1376.5
    5#334.1324.5357.3442.5346.7333.3310.8387.2351.8360.6354.9
    6#423.2351.1430.3362.8427.9328.4492.6335.7344.1419.7391.6
    下载: 导出CSV

    表  6  涂层结合强度实验结果

    Table  6.   Coating bonding strength under different spraying process

    ProceduresBonding strength/MPaAverage/MPa
    123
    1#45.0855.4249.2749.92
    2#62.4460.8346.9356.73
    3#58.7656.9163.2259.63
    4#56.8250.5652.7053.36
    5#61.5057.5660.4959.85
    6#53.6254.3547.0951.69
    下载: 导出CSV
  • [1] MARY C,FOUVRY S,MARTIN J M,et al. High temperature fretting wear of a Ti alloy/CuNiIn contact[J]. Surface and Coatings Technology,2008,203(5/6/7):691-698.
    [2] FRIDRICI V,FOUVRY S,KAPSA P. Fretting wear behavior of a Cu–Ni–In plasma coating[J]. Surface and Coatings Technology,2003,163(164):429-434.
    [3] 崔慧然,李宏然,崔启政,等. 航空发动机及燃气轮机叶片涂层概述[J]. 热喷涂技术,2019,11(1):82-94. doi: 10.3969/j.issn.1674-7127.2019.01.011

    CUI H R,LI H S,CUI Q Z,et al. Summary of blade coatings for aero-engine and gas turbine[J]. Thermal Spray Technology,2019,11(1):82-94.) doi: 10.3969/j.issn.1674-7127.2019.01.011
    [4] RAJENDRAN R. Gas turbine coatings – an overview[J]. Engineering Failure Analysis,2012,26:355-369. doi: 10.1016/j.engfailanal.2012.07.007
    [5] FREIMANIS A J,SEGALL A E,CONWAY J C,et al. Elevated temperature evaluation of fretting and metal transfer between coated titanium components[J]. Tribology Transactions,2000,43(4):653-658. doi: 10.1080/10402000008982391
    [6] HAGER C,SANDERS J,SHARMA S,et al. Gross slip fretting wear of CrCN,TiAlN,Ni,and CuNiIn coatings on Ti6Al4V interfaces[J]. Wear,2007,263(16):430-443.
    [7] MARY C,FOUVRY S,MARTIN J M,et al. Pressure and temperature effects on fretting wear damage of a Cu–Ni–In plasma coating versus Ti17 titanium alloy contact[J]. Wear,2011,272(1):18-37. doi: 10.1016/j.wear.2011.06.008
    [8] LIU H W,XU X J,ZHU M H,et al. High temperature fretting wear behavior of WC–25Co coatings prepared by D-gun spraying on Ti–Al–Zr titanium alloy[J]. Tribology International,2011,44(11):1461-1470. doi: 10.1016/j.triboint.2011.01.002
    [9] MARQUER M,PHILIPPON S,FAURE L,et al. Influence of two APS coatings on the high-speed tribological behavior of a contact between titanium alloys[J]. Tribology International,2019,136:13-22. doi: 10.1016/j.triboint.2019.03.030
    [10] HAJMRLE K, CHILKOWICH A P. Low friction cobalt based coatings for titanium alloys: US005955151A[P]. 1999.
    [11] BOTTO D,LAVELLA M. High temperature tribological study of cobalt-based coatings reinforced with different percentages of alumina[J]. Wear,2014,318(1/2):89-97.
    [12] CAO T K,ZHU Z B,LIU Y J. Preparation of a self-Lubricating Cu/h-BN coating on cemented carbide[J]. Advances in Materials Science and Engineering,2018,2018:1-12.
    [13] CAO Y X. Effects of hBN content on the microstructure and properties of atmospheric plasma-sprayed NiCr/Cr3C2-hBN composite coatings[J]. Journal of Thermal Spray Technology,2016,25(4):650-659. doi: 10.1007/s11666-016-0385-9
    [14] DU L Z,ZHANG W,LIU W,et al. Preparation and characterization of plasma sprayed Ni3Al-hBN composite coating[J]. Surface and Coatings Technology,2010,205(7):2419-2424. doi: 10.1016/j.surfcoat.2010.09.036
    [15] 曹玉霞,杜令忠,张伟刚,等. hBN含量对等离子喷涂NiCr/Cr3C2-hBN复合涂层力学性能的影响[J]. 金属热处理,2015,40(6):163-166.

    CAO Y X,DU L Z,ZHANG W G,et al. Effect of hBN content on mechanical properties of plasma-sprayed NiCr/Cr3C2-hBN composite coating[J]. Heat Treatment of Metals,2015,40(6):163-166.)
    [16] 陶翀,宋丹. 等离子喷涂MCrAlY涂层的高温氧化性能[J]. 理化检验,2019,55(2):79-83.

    TAO C,SONG D. High temperature oxidation properties of plasma sprayed MCrAlY coatings[J]. Physical Testing and Chemical Analysis Part A,2019,55(2):79-83.)
    [17] 刘沛静. 抗氧化耐磨MCrAlY系涂层概述[J]. 辽宁化工,2018,47(1):57-59. doi: 10.3969/j.issn.1004-0935.2018.01.022

    LIU P J. An overview about anti-oxidation wear-resistingMCrAlY coating[J]. Liaoning Chemical Industry,2018,47(1):57-59.) doi: 10.3969/j.issn.1004-0935.2018.01.022
    [18] AN Q,HUANG L J,WEI S L,et al. Enhanced interfacial bonding and superior oxidation resistance of CoCrAlY-TiB2 composite coating fabricated by air plasma spraying[J]. Corrosion Science,2019,158:108-102.
    [19] PAHLAVANYALI S,SABOUR A,HIRBOD M. The hot corrosion behaviour of HVOF sprayed MCrAlX coatings under Na2SO4 (NaCl) salt films[J]. Materials and Corrosion,2003,54(9):687-693. doi: 10.1002/maco.200303681
    [20] RUIZ L,LOZAN M,ALVARADO O,et al. Effect of HVOF processing parameters on the properties of NiCoCrAlY coatings by design of experiments[J]. Journal of Thermal Spray Technology,2014,23(6):950-961. doi: 10.1007/s11666-014-0121-2
    [21] 高俊国,陆峰,汤智慧,等. 喷涂距离对超音速火焰喷涂CoCrAlYTa涂层组织性能的影响[J]. 表面技术,2013,42(1):1-4.

    GAO J G,LU F,TANG Z H,et al. The influence of spraying distance on structure and properties of CoCrAlYTa coating prepared by HVOF[J]. Surface Technology,2013,42(1):1-4.)
    [22] CHEN Y,ZHAO X F,XIAO P. Effect of microstructure on early oxidation of MCrAlY coatings[J]. Acta Materialia,2018,159:150-162. doi: 10.1016/j.actamat.2018.08.018
    [23] ZHANG P M,YUAN K,PENG R L,et al. Long-term oxidation of MCrAlY coatings at 1000 °C and an Al-activity based coating life criterion[J]. Surface and Coatings Technology,2017,332:12-21. doi: 10.1016/j.surfcoat.2017.09.086
    [24] HERBERT H,SANJAY S,ROBERT M. Thermal spray:current status and future trends[J]. Materials Research Society Bulletin,2000,25(7):17-25. doi: 10.1557/mrs2000.119
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  3959
  • HTML全文浏览量:  2066
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-07
  • 修回日期:  2020-08-23
  • 网络出版日期:  2020-08-20
  • 刊出日期:  2020-10-01

目录

    /

    返回文章
    返回