The microstructure and properties of CoCrAlYSi-hBN coating prepared by HVOF
-
摘要: 采用超音速火焰喷涂(HVOF)方法制备CoCrAlYSi-hBN涂层,通过对涂层显微组织、硬度和结合强度的测试,探讨喷涂工艺参数(燃气流量和喷涂距离)的变化对涂层组织与性能的影响。采用扫描电镜(SEM)和能谱仪(EDS)研究涂层的形貌、微观组织及涂层成分,采用显微硬度计和拉伸试验机测试涂层的显微硬度和结合强度。研究结果表明:随着燃气流量的增加,喷涂粉末粒子熔化更充分,涂层中孔隙和氮化硼含量呈降低趋势,涂层硬度增加,结合强度先升高后降低;随喷涂距离增加,氧化物夹杂增多,涂层硬度呈现增大的趋势,结合强度先增加后降低。喷涂距离为225 mm时,涂层孔隙率和氮化硼含量很低,导致其高的硬度和结合强度。
-
关键词:
- 超音速火焰喷涂 /
- CoCrAlYSi-hBN涂层 /
- 微观组织 /
- 力学性能
Abstract: CoCrAlYSi-hBN coating was fabricated using the high-velocity oxygen fuel (HVOF) process under several processing conditions, and the effects of process parameters, gas flow and spray distance, on the microstructure and properties of the coating were investigated in the present paper. The microstructure, hardness, bonding strength and chemical composition of the coating was researched by using scanning electronmicroscopy (SEM), microhardness tester, adhesive strength measuring and energy dispersive spectroscopy (EDS). The results show that with the increasing gas flow, the porosity and h-BN content of the coating are reduced, and the hardness is improved; However, the bonding strength increases first and then decreases due to excessive energy leading serious oxidation. With the increase of spraying distance, the oxide inclusions are increased, which causes the hardness of coatings increase and the bonding strength decrease. In addition, when the spraying distance is 225 mm, the hardness and bonding strength of the coating are the highest due to the low porosity and boron nitride content.-
Key words:
- HVOF /
- CoCrAlYSi-hBN coating /
- microstructure /
- mechanical properties
-
表 1 CoCrAlYSi-hBN粉末化学成分(质量分数/%)
Table 1. Chemical composition and content of the CoCrAlYSi-hBN powder (mass fraction/%)
Co Cr Al Y Si hBN Bal. 25 5 0.27 1.75 15 表 2 喷涂工艺参数
Table 2. Spraying parameters
Procedures Spraying parameters O2 flowrate/(L•min−1) C3H8 flowrate/(L•min−1) Air flowrate/(L•min−1) Feed pressure /kPa Spray distance /mm 1# 25 25 40 15.85 275 2# 28 28 275 3# 28 28 225 4# 28 28 325 5# 32 32 275 6# 36 36 275 表 3 不同喷涂工艺参数下涂层(孔隙率+hBN)及氧化物含量
Table 3. (Pores+hBN) and oxides content of CoCrAlYSi-hBN coatings under different spraying parameters
Procedures Content/% (Pores+hBN) Oxides 1# 3.00 5.62 2# 3.61 8.61 3# 0.21 8.11 4# 2.09 10.35 5# 1.83 12.09 6# 1.68 14.79 表 4 能谱分析得到的不同工艺条件下的涂层中各元素的质量分数
Table 4. Mass fraction of element of CoCrAlYSi-hBN coating under various spraying parametersby EDS analysis
Procedures Mass fraction of element/% C O Al Si Cr Co 1# 8.97 3.23 5.09 1.85 25.97 54.95 2# 3.96 5.54 6.55 2.08 34.99 46.87 3# 17.38 4.89 4.26 1.54 23.10 48.83 4# 4.76 6.66 6.51 2.33 34.92 44.81 5# 7.51 6.80 6.36 2.23 33.50 43.61 6# 6.72 7.39 5.13 1.60 25.11 54.05 表 5 涂层显微硬度测试结果
Table 5. Coating microhardness with different spraying process
Prodecures HV0.3 Average 1 2 3 4 5 6 7 8 9 10 1# 284.6 334.9 255.0 300.8 332.4 289.2 284.0 323.7 274.6 347.6 302.7 2# 282.7 327.6 334.9 298.7 361.9 291.2 335.7 352.0 328.4 298.0 321.1 3# 472.7 408.4 501.5 464.5 431.5 425.6 405.1 385.1 451.4 377.1 432.3 4# 322.9 408.4 280.2 382.1 476.9 383.1 433.9 347.6 422.0 308.1 376.5 5# 334.1 324.5 357.3 442.5 346.7 333.3 310.8 387.2 351.8 360.6 354.9 6# 423.2 351.1 430.3 362.8 427.9 328.4 492.6 335.7 344.1 419.7 391.6 表 6 涂层结合强度实验结果
Table 6. Coating bonding strength under different spraying process
Procedures Bonding strength/MPa Average/MPa 1 2 3 1# 45.08 55.42 49.27 49.92 2# 62.44 60.83 46.93 56.73 3# 58.76 56.91 63.22 59.63 4# 56.82 50.56 52.70 53.36 5# 61.50 57.56 60.49 59.85 6# 53.62 54.35 47.09 51.69 -
[1] MARY C,FOUVRY S,MARTIN J M,et al. High temperature fretting wear of a Ti alloy/CuNiIn contact[J]. Surface and Coatings Technology,2008,203(5/6/7):691-698. [2] FRIDRICI V,FOUVRY S,KAPSA P. Fretting wear behavior of a Cu–Ni–In plasma coating[J]. Surface and Coatings Technology,2003,163(164):429-434. [3] 崔慧然,李宏然,崔启政,等. 航空发动机及燃气轮机叶片涂层概述[J]. 热喷涂技术,2019,11(1):82-94. doi: 10.3969/j.issn.1674-7127.2019.01.011CUI H R,LI H S,CUI Q Z,et al. Summary of blade coatings for aero-engine and gas turbine[J]. Thermal Spray Technology,2019,11(1):82-94.) doi: 10.3969/j.issn.1674-7127.2019.01.011 [4] RAJENDRAN R. Gas turbine coatings – an overview[J]. Engineering Failure Analysis,2012,26:355-369. doi: 10.1016/j.engfailanal.2012.07.007 [5] FREIMANIS A J,SEGALL A E,CONWAY J C,et al. Elevated temperature evaluation of fretting and metal transfer between coated titanium components[J]. Tribology Transactions,2000,43(4):653-658. doi: 10.1080/10402000008982391 [6] HAGER C,SANDERS J,SHARMA S,et al. Gross slip fretting wear of CrCN,TiAlN,Ni,and CuNiIn coatings on Ti6Al4V interfaces[J]. Wear,2007,263(16):430-443. [7] MARY C,FOUVRY S,MARTIN J M,et al. Pressure and temperature effects on fretting wear damage of a Cu–Ni–In plasma coating versus Ti17 titanium alloy contact[J]. Wear,2011,272(1):18-37. doi: 10.1016/j.wear.2011.06.008 [8] LIU H W,XU X J,ZHU M H,et al. High temperature fretting wear behavior of WC–25Co coatings prepared by D-gun spraying on Ti–Al–Zr titanium alloy[J]. Tribology International,2011,44(11):1461-1470. doi: 10.1016/j.triboint.2011.01.002 [9] MARQUER M,PHILIPPON S,FAURE L,et al. Influence of two APS coatings on the high-speed tribological behavior of a contact between titanium alloys[J]. Tribology International,2019,136:13-22. doi: 10.1016/j.triboint.2019.03.030 [10] HAJMRLE K, CHILKOWICH A P. Low friction cobalt based coatings for titanium alloys: US005955151A[P]. 1999. [11] BOTTO D,LAVELLA M. High temperature tribological study of cobalt-based coatings reinforced with different percentages of alumina[J]. Wear,2014,318(1/2):89-97. [12] CAO T K,ZHU Z B,LIU Y J. Preparation of a self-Lubricating Cu/h-BN coating on cemented carbide[J]. Advances in Materials Science and Engineering,2018,2018:1-12. [13] CAO Y X. Effects of hBN content on the microstructure and properties of atmospheric plasma-sprayed NiCr/Cr3C2-hBN composite coatings[J]. Journal of Thermal Spray Technology,2016,25(4):650-659. doi: 10.1007/s11666-016-0385-9 [14] DU L Z,ZHANG W,LIU W,et al. Preparation and characterization of plasma sprayed Ni3Al-hBN composite coating[J]. Surface and Coatings Technology,2010,205(7):2419-2424. doi: 10.1016/j.surfcoat.2010.09.036 [15] 曹玉霞,杜令忠,张伟刚,等. hBN含量对等离子喷涂NiCr/Cr3C2-hBN复合涂层力学性能的影响[J]. 金属热处理,2015,40(6):163-166.CAO Y X,DU L Z,ZHANG W G,et al. Effect of hBN content on mechanical properties of plasma-sprayed NiCr/Cr3C2-hBN composite coating[J]. Heat Treatment of Metals,2015,40(6):163-166.) [16] 陶翀,宋丹. 等离子喷涂MCrAlY涂层的高温氧化性能[J]. 理化检验,2019,55(2):79-83.TAO C,SONG D. High temperature oxidation properties of plasma sprayed MCrAlY coatings[J]. Physical Testing and Chemical Analysis Part A,2019,55(2):79-83.) [17] 刘沛静. 抗氧化耐磨MCrAlY系涂层概述[J]. 辽宁化工,2018,47(1):57-59. doi: 10.3969/j.issn.1004-0935.2018.01.022LIU P J. An overview about anti-oxidation wear-resistingMCrAlY coating[J]. Liaoning Chemical Industry,2018,47(1):57-59.) doi: 10.3969/j.issn.1004-0935.2018.01.022 [18] AN Q,HUANG L J,WEI S L,et al. Enhanced interfacial bonding and superior oxidation resistance of CoCrAlY-TiB2 composite coating fabricated by air plasma spraying[J]. Corrosion Science,2019,158:108-102. [19] PAHLAVANYALI S,SABOUR A,HIRBOD M. The hot corrosion behaviour of HVOF sprayed MCrAlX coatings under Na2SO4 (NaCl) salt films[J]. Materials and Corrosion,2003,54(9):687-693. doi: 10.1002/maco.200303681 [20] RUIZ L,LOZAN M,ALVARADO O,et al. Effect of HVOF processing parameters on the properties of NiCoCrAlY coatings by design of experiments[J]. Journal of Thermal Spray Technology,2014,23(6):950-961. doi: 10.1007/s11666-014-0121-2 [21] 高俊国,陆峰,汤智慧,等. 喷涂距离对超音速火焰喷涂CoCrAlYTa涂层组织性能的影响[J]. 表面技术,2013,42(1):1-4.GAO J G,LU F,TANG Z H,et al. The influence of spraying distance on structure and properties of CoCrAlYTa coating prepared by HVOF[J]. Surface Technology,2013,42(1):1-4.) [22] CHEN Y,ZHAO X F,XIAO P. Effect of microstructure on early oxidation of MCrAlY coatings[J]. Acta Materialia,2018,159:150-162. doi: 10.1016/j.actamat.2018.08.018 [23] ZHANG P M,YUAN K,PENG R L,et al. Long-term oxidation of MCrAlY coatings at 1000 °C and an Al-activity based coating life criterion[J]. Surface and Coatings Technology,2017,332:12-21. doi: 10.1016/j.surfcoat.2017.09.086 [24] HERBERT H,SANJAY S,ROBERT M. Thermal spray:current status and future trends[J]. Materials Research Society Bulletin,2000,25(7):17-25. doi: 10.1557/mrs2000.119 -