金属网对航空复合材料雷击损伤的防护

罗立 张骁亚 杨文锋

罗立, 张骁亚, 杨文锋. 金属网对航空复合材料雷击损伤的防护[J]. 航空材料学报, 2020, 40(5): 70-79. doi: 10.11868/j.issn.1005-5053.2020.000029
引用本文: 罗立, 张骁亚, 杨文锋. 金属网对航空复合材料雷击损伤的防护[J]. 航空材料学报, 2020, 40(5): 70-79. doi: 10.11868/j.issn.1005-5053.2020.000029
Li LUO, Xiaoya ZHANG, Wenfeng YANG. Protection of metal mesh from lightning damage to aviation composite materials[J]. Journal of Aeronautical Materials, 2020, 40(5): 70-79. doi: 10.11868/j.issn.1005-5053.2020.000029
Citation: Li LUO, Xiaoya ZHANG, Wenfeng YANG. Protection of metal mesh from lightning damage to aviation composite materials[J]. Journal of Aeronautical Materials, 2020, 40(5): 70-79. doi: 10.11868/j.issn.1005-5053.2020.000029

金属网对航空复合材料雷击损伤的防护

doi: 10.11868/j.issn.1005-5053.2020.000029
基金项目: 四川省科技厅重点研发项目(2018GZ0497,2019YFG0311))
详细信息
    通讯作者:

    杨文锋(1979—),男,教授,主要从事民机复合材料维修研究,E-mail:ywfcyy@163.com

  • 中图分类号: V259

Protection of metal mesh from lightning damage to aviation composite materials

  • 摘要: 碳/环氧复合材料因高强度、耐疲劳和抗腐蚀等性能被广泛应用于航空领域。针对飞机雷击过程中碳/环氧复合材料的损伤问题,建立具有铜网和铝网保护的碳/环氧复合材料层压板的三维有限元模型,并采用单元删除法对复合结构的雷电烧蚀单元进行处理。在不同电流峰值和不同网格间距下验证铜网和铝网的防雷效果,研究金属网质量变化与防雷效果之间的关系。结果表明:具有金属网保护的复合材料层压板的烧蚀面积和损伤深度均明显减小;网格间距越密集,防雷击效果越好;铜网复合层压板的保护效果要优于铝网;随着金属网质量的增加,复合材料层压板雷击损伤程度降低。

     

  • 图  1  双指数脉冲电流波形

    Figure  1.  Double exponential pulse current waveform

    图  2  不同雷电区域实验波形 (a)ⅠA区;(b)ⅠB区;(c)ⅡB区

    Figure  2.  Experimental waveforms in different lightning regions (a)ⅠA area;(b)ⅠB area;(c)ⅡB area

    图  3  带有金属网保护的有限元模型

    Figure  3.  Finite element model with metal mesh protection

    图  4  金属网格模型及其局部放大

    Figure  4.  Metal grid model and its partial enlargement

    图  5  雷电烧蚀分析流程图

    Figure  5.  Flow chart of lightning ablation analysis

    图  6  不同电流峰值下无金属网保护的复合层压板的温度分布

    Figure  6.  Temperature distribution of composite laminates without metal mesh protection under different current peaks (a)T1/T2 = 10/350(31.3 kA);(b)T1/T2 = 10/350(88.4 kA);(c)T1/T2 = 10/350(93.7 kA);(d)T1/T2 = 10/350(31.3 kA);(e)T1/T2 = 10/350(88.4 kA);(f)T1/ T2 = 10/350(93.7 kA)

    图  7  不同电流峰值下具有铜网保护的复合层压板的温度分布

    Figure  7.  Temperature distribution of composite laminates with copper mesh protection under different current peaks (a)T1/T2 = 10/350(31.3 kA);(b)T1/T2 = 10/350(88.4 kA);(c)T1/T2 = 10/350(93.7 kA)

    图  8  不同电流峰值下具有铝网保护的复合层压板的温度分布

    Figure  8.  Temperature distribution of composite laminates with aluminum mesh protection at different current peaks (a)T1/T2 = 10/350(31.3 kA);(b)T1/T2 = 10/350(88.4 kA);(c)T1/T2 = 10/350(93.7 kA)

    图  9  带有铜网保护的复合层压板的温度分布局部放大

    Figure  9.  Partially enlarged temperature distribution of the composite laminate with copper mesh protection

    图  10  具有铝网和铜网保护的复合层压板的温度分布的较大局部放大 (a)铝网保护网;(b)铜网保护网

    Figure  10.  A larger partial enlargement of temperature distribution of a composite laminate with aluminum mesh and copper mesh protection (a)aluminum mesh protection net;(b)copper mesh protection net

    图  11  铝网和铜网的烧蚀结果 (a)铝网和铜网的烧蚀模型;(b)铜网烧蚀模型

    Figure  11.  Ablation results of aluminum mesh and copper mesh (a)ablation model of aluminum mesh mesh and copper mesh;(b)ablation model of copper mesh

    图  12  不同网格间距下铜网保护的复合层压板的温度分布

    Figure  12.  Temperature distribution of composite laminates protected by copper mesh under different grid spacing (a)2.5 mm,T1/T2 = 10/350(93.7 kA);(b)4 mm,T1/T2 = 10/350(93.7 kA);(c)6 mm,T1/T2 = 10/350(93.7 kA)

    图  13  不同网格间距下铝网保护的复合层压板的温度分布

    Figure  13.  Temperature distribution of composite laminates protected by aluminum mesh under different grid spacing (a)2.5 mm,T1/T2 = 10/350(93.7 kA);(b)4 mm,T1/T2 = 10/350(93.7 kA);(c)6 mm,T1/T2 = 10/350(93.7 kA)

    图  14  金属网质量增加和烧蚀面积的关系(3.2 mm)

    Figure  14.  Relationship between mass increase of metal mesh and ablation area(3.2 mm)

    图  15  金属网质量增加和最大损伤深度的关系(3.2 mm)

    Figure  15.  Relationship between mass increase of metal mesh and maximum damage depth(3.2 mm)

    图  16  不同间距和电流峰值下质量增加与烧蚀面积的关系

    Figure  16.  Relationship between mass increase and ablation area at different pitches and current peaks

    图  17  不同间距和电流峰值下金属网质量增加与最大损伤深度的关系

    Figure  17.  Relationship between mass increase of metal mesh and maximum damage depth at different pitches and current peaks

    表  1  雷电流波形组合

    Table  1.   Lightning current waveform combinations

    Lightning strike areaVoltage waveformCurrent component
    ⅠAA,B,DA,B
    ⅠBA,B,DA,B,C,D
    ⅡAAD,B,C
    ⅡBAD,B,C
    AA,C
    下载: 导出CSV

    表  2  不同雷电区域电流波形参数

    Table  2.   Current waveform parameters of different lightning regions

    Lightning
    strike area
    Lightning waveformPeak pulse
    current/kA
    Action points/(106A2•s)
    ⅠAA88.42
    ⅠBA + D93.72.25
    ⅡBD31.30.25
    下载: 导出CSV

    表  3  碳纤维/环氧树脂复合层压板的热和电材料性能

    Table  3.   Thermal and electrical material properties of carbon fiber / epoxy composite laminates

    Temperature/
    Density/
    (kg•mm–3
    Specific heat/
    (J•kg–1•℃–1))
    Longitudinal thermal conductivity/
    (W·mm–1•℃–1
    Transverse thermal conductivity/
    (W•mm–1•℃–1
    Transverse conductivity/
    (Ω–1•mm–1
    Deep layer conductivity/
    (Ω–1•mm–1
    251.52 × 10–610650.0080.000670.0011453.876 × 10–6
    3431.52 × 10–621000.0026080.000180.0011453.876 × 10–6
    5001.1 × 10–621000.0017360.000122
    5101.1 × 10–617000.0017360.000122
    10001.1 × 10–619000.0017360.000122
    33161.1 × 10–625090.0017360.000122
    > 33161.1 × 10–658750.0010150.0010150.21 × 106
    下载: 导出CSV

    表  4  网格间距为3.2 mm时金属网格保护的复合层压板的损伤量

    Table  4.   Damage amount of composite laminate protected by metal grid when grid spacing is 3.2 mm

    Grid typePeak current/kADamage area/mm2Maximum damage depth/mmIncreased mass/g
    Copper mesh31.3 1280.05 21.40
    88.4 9760.13
    93.710080.14
    Aluminum mesh31.3 2420.06 6.45
    88.416800.15
    93.717280.16
    下载: 导出CSV
  • [1] 黄军玲,谢家雨. 复合材料表面金属网对直升机雷击效应的影响[J]. 系统仿真学报,2019,31(5):992-1001.

    HUANG J L,XIE J Y. Effect of metal surface on composite material on helicopter lightning strike[J]. Journal of System Simulation,2019,31(5):992-1001.)
    [2] 胡挺,余雄庆. 飞机金属屏蔽罩雷击防护仿真分析与试验研究[J]. 兵器装备工程学报,2018,39(8):169-172. doi: 10.11809/bqzbgcxb2018.08.035

    HU T,YU X Q. Simulation analysis and experimental research on lightning protection of aircraft metal shield[J]. Journal of Ordnance and Equipment Engineering,2018,39(8):169-172.) doi: 10.11809/bqzbgcxb2018.08.035
    [3] ALTALHI A,WALEED A,ALQWEAI N. Cardiac rhythm recorded by implanted loop recorder during lightning strike[J]. Annals of Saudi Medicine,2017,37(5):401-402. doi: 10.5144/0256-4947.2017.401
    [4] FOSTER P,ADALEL G,MURPHY A. Quantifying the influence of lightning strike pressure loading on composite specimen damage[J]. Applied Composite Materials,2019,26(1):115-137. doi: 10.1007/s10443-018-9685-1
    [5] SUPARTA W,ZAINUDIN S K. Interaction between global positioning system tropospheric delay and lightning strike frequency[J]. Applied Composite Materials,2017,23(2):1366-1369.
    [6] YIN J J,LI S L,YAO X L. Lightning strike ablation damage characteristic analysis for carbon fiber/epoxy composite laminate with fastener[J]. Applied Composite Materials,2016,23(4):821-837. doi: 10.1007/s10443-016-9487-2
    [7] DHANYA T M,CHANDRA S Y. Lightning strike effect on carbon fiber reinforced composites-effect of copper mesh protection[J]. Materials Today Communications,2018,16(2):124-134.
    [8] FU K K, YE L, CHANG L, et al. Modelling of lightning strike damage to CFRP composites with an advanced protection system[J]. Composite Structures, 2017, (19)165: 83-90.
    [9] LI Y C,XUE T,LI R F. Influence of a fiberglass layer on the lightning strike damage response of CFRP laminates in the dry and hygrothermal environments[J]. Composite Structures,2018,187(7):179-189.
    [10] 朱健健,李梦. 航空复合材料结构雷击损伤与雷击防护的研究进展[J]. 材料导报,2015,29(17):37-42.

    ZHU J J,LI M. Research progress on lightning damage and lightning protection of aviation composite structures[J]. Materials Review,2015,29(17):37-42.)
    [11] 卢翔,赵淼,单泽众. 不同喷铝参数对复合材料雷击防护性能模拟[J]. 航空材料学报,2020,40(2):79-88. doi: 10.11868/j.issn.1005-5053.2019.000079

    LU X,ZHAO M,SHAN Z Z. Simulation of the lightning protection performance of composite materials with different spray aluminum parameters[J]. Journal of Aeronautical Materials,2020,40(2):79-88.) doi: 10.11868/j.issn.1005-5053.2019.000079
    [12] 李祥超,陈则煌,周中山,等. 金属网笼对雷击输电线辐射电磁场的屏蔽分析[J]. 高压电器,2016,52(2):50-56.

    LI X C,CHEN Z H,ZHOU Z S,et al. Shielding analysis of metal net cage to radiated electromagnetic field of lightning strike transmission lines[J]. High Voltage Apparatus,2016,52(2):50-56.)
    [13] 肖尧,李曙林,王育虔,等. 复合材料电导率对雷击烧蚀损伤程度的影响[J]. 航空材料学报,2018,38(5):123-131. doi: 10.11868/j.issn.1005-5053.2018.000037

    XIAO Y,LI S L,WANG Y Q,et al. Effect of the electrical conductivity of composite materials on the extent of lightning ablation damage[J]. Journal of Aeronautical Materials,2018,38(5):123-131.) doi: 10.11868/j.issn.1005-5053.2018.000037
    [14] 田向渝,姚学玲,孙晋茹,等. 含紧固件碳纤维增强树脂复合材料在雷电流A分量下的损伤特性[J]. 复合材料学报,2020,37(2):356-365.

    TIAN X Y,YAO X L,SUN J R,et al. Damage characteristics of carbon fiber reinforced resin composites with fasteners under lightning current A component[J]. Journal of Composite Materials,2020,37(2):356-365.)
    [15] 刘元军,李卫斌,赵晓明,等. 聚吡咯涂层织物的介电性能研究[J]. 材料科学与工艺,2018,26(2):41-47. doi: 10.11951/j.issn.1005-0299.20160471

    LIU Y J,LI W B,ZHAO X M,et al. Research on the dielectric properties of polypyrrole-coated fabrics[J]. Materials Science and Technology,2018,26(2):41-47.) doi: 10.11951/j.issn.1005-0299.20160471
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  4397
  • HTML全文浏览量:  1938
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-19
  • 修回日期:  2020-03-19
  • 网络出版日期:  2020-09-10
  • 刊出日期:  2020-10-01

目录

    /

    返回文章
    返回