Protection of metal mesh from lightning damage to aviation composite materials
-
摘要: 碳/环氧复合材料因高强度、耐疲劳和抗腐蚀等性能被广泛应用于航空领域。针对飞机雷击过程中碳/环氧复合材料的损伤问题,建立具有铜网和铝网保护的碳/环氧复合材料层压板的三维有限元模型,并采用单元删除法对复合结构的雷电烧蚀单元进行处理。在不同电流峰值和不同网格间距下验证铜网和铝网的防雷效果,研究金属网质量变化与防雷效果之间的关系。结果表明:具有金属网保护的复合材料层压板的烧蚀面积和损伤深度均明显减小;网格间距越密集,防雷击效果越好;铜网复合层压板的保护效果要优于铝网;随着金属网质量的增加,复合材料层压板雷击损伤程度降低。Abstract: Carbon / epoxy composites are widely used in aviation due to their high strength, fatigue resistance and corrosion resistance. Aiming at the damage of carbon / epoxy composites during aircraft lightning strikes, a three-dimensional finite element model of carbon / epoxy composite laminates protected by copper mesh and aluminum mesh was established, and the lightning ablative element of composite structure was treated by element deletion method. The lightning protection effect of copper mesh and aluminum mesh was verified under different current peaks and different grid spacing, and the relationship between the weight change of the metal mesh and the lightning protection effect was studied. The test results show that the ablation area and damage depth of the composite laminate with metal mesh protection are significantly reduced. The denser the grid spacing is, the better the lightning protection effect is. The copper mesh composite laminate has better protection effect than the aluminum mesh. With the weight of the metal mesh increases, the degree of lightning damage to the composite laminate decreases.
-
Key words:
- carbon/epoxy composite /
- lightning damage /
- laminate /
- metal mesh /
- copper mesh /
- ablation
-
图 6 不同电流峰值下无金属网保护的复合层压板的温度分布
Figure 6. Temperature distribution of composite laminates without metal mesh protection under different current peaks (a)T1/T2 = 10/350(31.3 kA);(b)T1/T2 = 10/350(88.4 kA);(c)T1/T2 = 10/350(93.7 kA);(d)T1/T2 = 10/350(31.3 kA);(e)T1/T2 = 10/350(88.4 kA);(f)T1/ T2 = 10/350(93.7 kA)
表 1 雷电流波形组合
Table 1. Lightning current waveform combinations
Lightning strike area Voltage waveform Current component ⅠA A,B,D A,B ⅠB A,B,D A,B,C,D ⅡA A D,B,C ⅡB A D,B,C Ⅲ A A,C 表 2 不同雷电区域电流波形参数
Table 2. Current waveform parameters of different lightning regions
Lightning
strike areaLightning waveform Peak pulse
current/kAAction points/(106A2•s) ⅠA A 88.4 2 ⅠB A + D 93.7 2.25 ⅡB D 31.3 0.25 表 3 碳纤维/环氧树脂复合层压板的热和电材料性能
Table 3. Thermal and electrical material properties of carbon fiber / epoxy composite laminates
Temperature/
℃Density/
(kg•mm–3)Specific heat/
(J•kg–1•℃–1))Longitudinal thermal conductivity/
(W·mm–1•℃–1)Transverse thermal conductivity/
(W•mm–1•℃–1)Transverse conductivity/
(Ω–1•mm–1)Deep layer conductivity/
(Ω–1•mm–1)25 1.52 × 10–6 1065 0.008 0.00067 0.001145 3.876 × 10–6 343 1.52 × 10–6 2100 0.002608 0.00018 0.001145 3.876 × 10–6 500 1.1 × 10–6 2100 0.001736 0.0001 2 2 510 1.1 × 10–6 1700 0.001736 0.0001 2 2 1000 1.1 × 10–6 1900 0.001736 0.0001 2 2 3316 1.1 × 10–6 2509 0.001736 0.0001 2 2 > 3316 1.1 × 10–6 5875 0.001015 0.001015 0.2 1 × 106 表 4 网格间距为3.2 mm时金属网格保护的复合层压板的损伤量
Table 4. Damage amount of composite laminate protected by metal grid when grid spacing is 3.2 mm
Grid type Peak current/kA Damage area/mm2 Maximum damage depth/mm Increased mass/g Copper mesh 31.3 128 0.05 21.40 88.4 976 0.13 93.7 1008 0.14 Aluminum mesh 31.3 242 0.06 6.45 88.4 1680 0.15 93.7 1728 0.16 -
[1] 黄军玲,谢家雨. 复合材料表面金属网对直升机雷击效应的影响[J]. 系统仿真学报,2019,31(5):992-1001.HUANG J L,XIE J Y. Effect of metal surface on composite material on helicopter lightning strike[J]. Journal of System Simulation,2019,31(5):992-1001.) [2] 胡挺,余雄庆. 飞机金属屏蔽罩雷击防护仿真分析与试验研究[J]. 兵器装备工程学报,2018,39(8):169-172. doi: 10.11809/bqzbgcxb2018.08.035HU T,YU X Q. Simulation analysis and experimental research on lightning protection of aircraft metal shield[J]. Journal of Ordnance and Equipment Engineering,2018,39(8):169-172.) doi: 10.11809/bqzbgcxb2018.08.035 [3] ALTALHI A,WALEED A,ALQWEAI N. Cardiac rhythm recorded by implanted loop recorder during lightning strike[J]. Annals of Saudi Medicine,2017,37(5):401-402. doi: 10.5144/0256-4947.2017.401 [4] FOSTER P,ADALEL G,MURPHY A. Quantifying the influence of lightning strike pressure loading on composite specimen damage[J]. Applied Composite Materials,2019,26(1):115-137. doi: 10.1007/s10443-018-9685-1 [5] SUPARTA W,ZAINUDIN S K. Interaction between global positioning system tropospheric delay and lightning strike frequency[J]. Applied Composite Materials,2017,23(2):1366-1369. [6] YIN J J,LI S L,YAO X L. Lightning strike ablation damage characteristic analysis for carbon fiber/epoxy composite laminate with fastener[J]. Applied Composite Materials,2016,23(4):821-837. doi: 10.1007/s10443-016-9487-2 [7] DHANYA T M,CHANDRA S Y. Lightning strike effect on carbon fiber reinforced composites-effect of copper mesh protection[J]. Materials Today Communications,2018,16(2):124-134. [8] FU K K, YE L, CHANG L, et al. Modelling of lightning strike damage to CFRP composites with an advanced protection system[J]. Composite Structures, 2017, (19)165: 83-90. [9] LI Y C,XUE T,LI R F. Influence of a fiberglass layer on the lightning strike damage response of CFRP laminates in the dry and hygrothermal environments[J]. Composite Structures,2018,187(7):179-189. [10] 朱健健,李梦. 航空复合材料结构雷击损伤与雷击防护的研究进展[J]. 材料导报,2015,29(17):37-42.ZHU J J,LI M. Research progress on lightning damage and lightning protection of aviation composite structures[J]. Materials Review,2015,29(17):37-42.) [11] 卢翔,赵淼,单泽众. 不同喷铝参数对复合材料雷击防护性能模拟[J]. 航空材料学报,2020,40(2):79-88. doi: 10.11868/j.issn.1005-5053.2019.000079LU X,ZHAO M,SHAN Z Z. Simulation of the lightning protection performance of composite materials with different spray aluminum parameters[J]. Journal of Aeronautical Materials,2020,40(2):79-88.) doi: 10.11868/j.issn.1005-5053.2019.000079 [12] 李祥超,陈则煌,周中山,等. 金属网笼对雷击输电线辐射电磁场的屏蔽分析[J]. 高压电器,2016,52(2):50-56.LI X C,CHEN Z H,ZHOU Z S,et al. Shielding analysis of metal net cage to radiated electromagnetic field of lightning strike transmission lines[J]. High Voltage Apparatus,2016,52(2):50-56.) [13] 肖尧,李曙林,王育虔,等. 复合材料电导率对雷击烧蚀损伤程度的影响[J]. 航空材料学报,2018,38(5):123-131. doi: 10.11868/j.issn.1005-5053.2018.000037XIAO Y,LI S L,WANG Y Q,et al. Effect of the electrical conductivity of composite materials on the extent of lightning ablation damage[J]. Journal of Aeronautical Materials,2018,38(5):123-131.) doi: 10.11868/j.issn.1005-5053.2018.000037 [14] 田向渝,姚学玲,孙晋茹,等. 含紧固件碳纤维增强树脂复合材料在雷电流A分量下的损伤特性[J]. 复合材料学报,2020,37(2):356-365.TIAN X Y,YAO X L,SUN J R,et al. Damage characteristics of carbon fiber reinforced resin composites with fasteners under lightning current A component[J]. Journal of Composite Materials,2020,37(2):356-365.) [15] 刘元军,李卫斌,赵晓明,等. 聚吡咯涂层织物的介电性能研究[J]. 材料科学与工艺,2018,26(2):41-47. doi: 10.11951/j.issn.1005-0299.20160471LIU Y J,LI W B,ZHAO X M,et al. Research on the dielectric properties of polypyrrole-coated fabrics[J]. Materials Science and Technology,2018,26(2):41-47.) doi: 10.11951/j.issn.1005-0299.20160471 -