热挤压高强TiCp/Mg-1.4Zn-2.6Ca-0.5Mn纳米复合材料的组织与力学性能

聂凯波 朱智浩 邓坤坤 韩俊刚

聂凯波, 朱智浩, 邓坤坤, 韩俊刚. 热挤压高强TiCp/Mg-1.4Zn-2.6Ca-0.5Mn纳米复合材料的组织与力学性能[J]. 航空材料学报, 2020, 40(5): 20-28. doi: 10.11868/j.issn.1005-5053.2020.000083
引用本文: 聂凯波, 朱智浩, 邓坤坤, 韩俊刚. 热挤压高强TiCp/Mg-1.4Zn-2.6Ca-0.5Mn纳米复合材料的组织与力学性能[J]. 航空材料学报, 2020, 40(5): 20-28. doi: 10.11868/j.issn.1005-5053.2020.000083
Kaibo NIE, Zhihao ZHU, Kunkun DENG, Jungang HAN. Microstructure and mechanical properties of ultra-high strength TiCp/Mg-1.4Zn-2.6Ca-0.5Mn nanocomposite after hot extrusion[J]. Journal of Aeronautical Materials, 2020, 40(5): 20-28. doi: 10.11868/j.issn.1005-5053.2020.000083
Citation: Kaibo NIE, Zhihao ZHU, Kunkun DENG, Jungang HAN. Microstructure and mechanical properties of ultra-high strength TiCp/Mg-1.4Zn-2.6Ca-0.5Mn nanocomposite after hot extrusion[J]. Journal of Aeronautical Materials, 2020, 40(5): 20-28. doi: 10.11868/j.issn.1005-5053.2020.000083

热挤压高强TiCp/Mg-1.4Zn-2.6Ca-0.5Mn纳米复合材料的组织与力学性能

doi: 10.11868/j.issn.1005-5053.2020.000083
基金项目: 国家自然科学基金(51771129,51401144,51771128);山西省高等学校创新人才支持计划;山西省自然科学基金(2015021067,201601D011034);山西省国际合作项目(201703D421039)
详细信息
    通讯作者:

    聂凯波(1984—),男,博士,副教授,研究方向为镁合金及其复合材料,联系地址:山西省太原市迎泽西大街79号太原理工大学(030024),E-mail:niekaibo@tyut.edu.cn

  • 中图分类号: TB331

Microstructure and mechanical properties of ultra-high strength TiCp/Mg-1.4Zn-2.6Ca-0.5Mn nanocomposite after hot extrusion

  • 摘要: 采用超声波辅助半固态搅拌铸造法制备TiCp/Mg-1.4Zn-2.6Ca-0.5Mn纳米复合材料,实现纳米TiCp的均匀分布,并分析热挤压前后复合材料的组织与力学性能。结果表明:挤压前第二相密集区晶粒尺寸小于第二相贫瘠区,第二相为Ca2Mg6Zn3相;不同温度(350 ℃、310 ℃和270 ℃)挤压后复合材料均发生了动态再结晶(DRX),随挤压温度的降低,DRX晶粒尺寸及其体积分数趋于减小,而析出相体积分数则略有增加,超细晶(约0.34 μm)和大量MgZn2析出相出现在270 ℃挤压态复合材料中;复合材料晶粒细化不仅与DRX有关,还与纳米级的α-Mn颗粒、TiCp和MgZn2析出相的钉扎效应有关;经270 ℃/0.1 mm•s−1挤压后,复合材料的屈服强度(YS)、极限抗拉强度(UTS)和伸长率(EL)分别约为439.7 MPa、460.2 MPa和1.73%;屈服强度提高主要与细晶强化、Orowan强化、热错配强化和位错强化有关,其中细晶强化的贡献率最大超过60%。

     

  • 图  1  纳米TiCp颗粒的SEM形貌

    Figure  1.  SEM morphology of TiCp nanoparticles

    图  2  铸态和均匀化处理后TiCp/ZXM纳米复合材料的OM图像和SEM图像 (a)铸态;(b)、(c)、(d)均匀化处理

    Figure  2.  OM and SEM images of as-cast and as-homogenized TiCp/ZXM nanocomposites (a) as-cast;(b),(c),(d)as-homogenized nanocomposite

    图  3  铸态TiCp/ZXM纳米复合材料的TEM像(a)沿晶界分布的粗大块状Ca2Mg6Zn3相(图3(a)中的插图为块状相的选区电子衍射,表明为Ca2Mg6Zn3);(b)晶粒内部的细小片状Ca2Mg6Zn3相及沿晶界分布的TiCp

    Figure  3.  TEM micrographs of as-cast TiCp/ZXM nanocomposites (a) block Ca2Mg6Zn3 phase along grain boundary(Insert in Fig. 3(a) shows the selected area diffraction pattern from the block phase,shown to be consistent with Ca2Mg6Zn3);(b) fine Ca2Mg6Zn3 phase within grain and TiCp along grain boundary

    图  4  TiC/pZXM以0.1 mm/s挤压速率在不同温度挤压后OM像和DRX晶粒尺寸分布 (a)、(b)、(c)TiCp/ZXM-350;(d)、(e)、(f)TiCp​​​​​​​/ZXM-310;(g)、(h)、(i)TiCp​​​​​​​/ZXM-270

    Figure  4.  OM images and its corresponding DRX grain size distribution of TiCp/ZXM extruded with the speed of 0.1 mm/s at different extrusion temperatures (a),(b),(c)TiCp/ZXM-350;(d),(e),(f)TiCp​​​​​​​/ZXM-310;(g),(h),(i)TiCp/ZXM-270

    图  5  TiCp/ZXM在0.1 mm/s经不同温度挤压后的析出相尺寸和体积分数

    Figure  5.  Average size and volume fraction of precipitates in TiCp/ZXM nanocomposite extrude at 0.01 mm/s with different extrusion temperatures

    图  6  TiCp/ZXM在270 ℃以0.1 mm/s挤压后的TEM明场像 (a)TiCp颗粒分布;(b)第二相分布和DRX晶粒

    Figure  6.  Bright field TEM images of TiCp/ZXM extruded at 270 ℃ by 0.1 mm/s (a) distribution of TiCp;(b)distribution of second phases and DRX grains

    图  7  不同温度挤压后TiCp/ZXM纳米复合材料的室温拉伸性能 (a)工程应力-应变曲线(插图为基于YS和d-1/2拟合的TiCp/ZXM纳米复合材料的Hall-Petch斜率);(b)YS、UTS和EL

    Figure  7.  Room tensile properties of TiCp/ZXM with different extrusion temperatures (a)tensile stain-stress curves(Insert shows the Hall-Petch plots of the yield strength against d-1/2 for TiCp​​​​​​​/ZXM nanocomposites);(b) YS,UTS and EL

    图  8  各强化机制及实验值和理论值对比 (a)强化机制;(b)实验值和理论值

    Figure  8.  Comparison strengthening mechanisms and comparison of YS among the experimental data and predicted data(a)strengthening mechanisms;(b)experimental data and predicted data

    图  9  TiCp/ZXM 纳米复合材料经270 ℃/0.1 mm•s−1挤压后拉伸断口SEM像 (a)低倍;(b)高倍

    Figure  9.  SEM fracture surface morphologies of TiCp/ZXM-1.2 nanocomposites extruded at 270 ℃/0.1 mm•s−1 (a)low magnification;(b)high magnification

    表  1  本工作TiCp/ZXM纳米复合材料和其他挤压态镁基纳米复合的拉伸性能对比

    Table  1.   Tensile properties of developed TiCp/ZXM nanocomposites,and their comparison with previous studies

    MaterialDeformationYS/MPaYS/MPaEL/%References
    TiCp/ZXMAs-cast 92.8 ± 2.3133.6 ± 13.1 2.1 ± 0.7[Present work]
    TiCp/ZXM-350EX333.4 ± 15.9338.8 ± 3.5 6.2 ± 1.3[Present work]
    TiCp/ZXM-310EX398.2 ± 8.6405.1 ± 6.6 3.1 ± 0.6[Present work]
    TiCp/ZXM-270EX439.7 ± 10.6460.2 ± 1.81.73 ± 0.4[Present work]
    N-SiCp/AZ91EX≈255≈345≈12[10]
    N-SiCp/AZ31EX≈320≈385≈6[6]
    N-TiCpZK60EX≈184≈309≈11.6[14]
    下载: 导出CSV
  • [1] DENG K K,WANG C J,NIE K B,et al. Recent research on the deformation behavior of particle reinforced magnesium matrix composite:a review[J]. Acta Metallurgica Sinica(English Letters),2019,32(4):413-425.
    [2] NIE K B,ZHU Z H,DENG K K,et al. Hot deformation behavior and processing maps of SiC nanoparticles and second phase synergistically reinforced magnesium matrix composites[J]. Nanomaterials,2019,9(1):57. doi: 10.3390/nano9010057
    [3] 徐雪雪,朱世杰,王青,等. 搅拌摩擦加工对Mg-Zn-Y-Nd 合金厚板组织与性能的影响[J]. 航空材料学报,2019,39(1):9-16.

    XU X X,ZHU S J,WANG Q,et al. Effects of single-side and double-side friction stir processing on microstructure and properties of Mg-Zn-Y-Nd alloy thick plate[J]. Journal of Aeronautical Materials,2019,39(1):9-16.)
    [4] NIE K B,HAN J G,DENG K K,et al. Simultaneous improvements in tensile strength and elongation of a Mg-2Zn-0.8Sr-0.2Ca alloy by a combination of microalloying and low content of TiC nanoparticles[J]. Materials Letters,2020,260:126951. doi: 10.1016/j.matlet.2019.126951
    [5] NIE K B,GUO Y C,MUNROE M,et al. Microstructure and tensile properties of magnesium matrix nanocomposite reinforced by high mass fraction of nano-sized particles including TiC and MgZn2[J]. Journal of Alloys and Compounds,2020,819:153348. doi: 10.1016/j.jallcom.2019.153348
    [6] 何阳,袁秋红,罗岚,等. 镁基复合材料研究进展及新思路[J]. 航空材料学报,2018,38(4):26-36. doi: 10.11868/j.issn.1005-5053.2018.001013

    HE Y,YUAN Q H,LUO L,et al. Current study and novel ideas on magnesium matrix composites[J]. Journal of Aeronautical Materials,2018,38(4):26-36.) doi: 10.11868/j.issn.1005-5053.2018.001013
    [7] ZHU Z H,NIE K B,DENG K K,et al. Fabrication of biodegradable magnesium matrix composite with ultrafine grains and high strength by adding TiC nanoparticles to Mg-1.12Ca-0.84Zn-0.23Mn(at. %)alloy[J]. Materials Science & Engineering:C,2020,107:110360.
    [8] NIE K B,ZHU Z H,MUNROE M,et al. Microstructure,tensile properties and work hardening behavior of an extruded Mg-Zn-Ca-Mn magnesium alloy[J]. Acta Metallurgica Sinica(English Letters),2020,33:922-936.
    [9] NIE K B,ZHU Z H,MUNROE M,et al. The effect of Zn/Ca ratio on the microstructure,texture and mechanical properties of dilute Mg-Zn-Ca-Mn alloys that exhibit superior strength[J]. Journal of Materials Science,2020,55:3588-3604. doi: 10.1007/s10853-019-04174-4
    [10] NIE K B,WANG X J,XU L,et al. Effect of hot extrusion on microstructures and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite [J]. Journal of Alloys and Compounds,2012,512(1):355-360. doi: 10.1016/j.jallcom.2011.09.099
    [11] GUO Y C,NIE K B,KANG X K,et al. Achieving high-strength magnesium matrix nanocomposite through synergistical effect of external hybrid (SiC+TiC) nanoparticles and dynamic precipitated phase[J]. Journal of Alloys and Compounds,2019,771:847-856. doi: 10.1016/j.jallcom.2018.09.030
    [12] KHOSHZABN K H,FERESHTEH S F,ABEDI H R. Mechanical properties improvement of cast AZ80 Mg alloy/nano-particles composite via thermomechanical processing[J]. Materials Science and Engineering:A,2014,595:284-90. doi: 10.1016/j.msea.2013.12.029
    [13] NIE K B,GUO Y C,DENG K K,et al. High strength TiCp/Mg-Zn-Ca magnesium matrix nanocomposites with improved formability at low temperature[J]. Journal of Alloys and Compounds,2019,792:267-278. doi: 10.1016/j.jallcom.2019.04.028
    [14] PARAMSOTHY M,CHAN J,KWOK R,et al. Adding TiC nanoparticles to magnesium alloy ZK60A for strength/ductility enhancement[J]. Journal of Nanomaterials,2011(12):1-9.
    [15] NIE K B,KANG X K,DENG K K,et al. Development of Mg-Zn-Y-Ca alloys containing icosahedral quasicrystal phase through trace addition of Y[J]. Journal of Materials Research,2018,33(18):2806-2816. doi: 10.1557/jmr.2018.267
    [16] NIE K B,ZHU Z H,DENG K K,et al. Influence of extrusion parameters on microstructure,texture and mechanical properties of a low Mn and high-Ca containing Mg-2.9Zn-1.1Ca-0.5Mn magnesium alloy[J]. Journal of Materials Research and Technology,2020,9(3):5264-5277. doi: 10.1016/j.jmrt.2020.03.053
    [17] NIE K B, ZHU Z H, DENG K K, et al. Microstructure and tensile strength of nano-TiCp/Mg-Zn-Ca magnesium matrix nanocomposites processed by multidirectional forging [J/OL]. Metals and Materials International, 2019. https://doi.org/10.1007/s12540-019-00569-9
    [18] 叶想平,李英雷,翁继东,等. 颗粒增强金属基复合材料的强化机理研究现状[J]. 材料工程,2018,46(12):28-37. doi: 10.11868/j.issn.1001-4381.2016.001214

    YE X P,LI Y L,WENG J D,et al. Research status on strengthening mechanism of particle-renforced metal matrix composites[J]. Journal of Materials Engineering,2018,46(12):28-37.) doi: 10.11868/j.issn.1001-4381.2016.001214
    [19] SANATY A Z. Comparison between current models for the strength of particulate-reinforcedmetal matrix nanocomposites with emphasis on consideration of Hall-Petch effect[J]. Materials Science and Engineering:A,2012,531:112-118. doi: 10.1016/j.msea.2011.10.043
    [20] JIANG Z T,JIANG B,YANG H,et al. Influence of the Al2Ca phase on microstructure and mechanical properties of Mg-Al-Ca alloys[J]. Journal of Alloys and Compounds,2015,647:357-363. doi: 10.1016/j.jallcom.2015.06.060
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  11558
  • HTML全文浏览量:  4940
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-09
  • 修回日期:  2020-06-10
  • 网络出版日期:  2020-08-20
  • 刊出日期:  2020-10-01

目录

    /

    返回文章
    返回