金属陶瓷功能梯度板的模态频率分析

刘超 刘文光

刘超, 刘文光. 金属陶瓷功能梯度板的模态频率分析[J]. 航空材料学报, 2020, 40(5): 88-95. doi: 10.11868/j.issn.1005-5053.2020.000087
引用本文: 刘超, 刘文光. 金属陶瓷功能梯度板的模态频率分析[J]. 航空材料学报, 2020, 40(5): 88-95. doi: 10.11868/j.issn.1005-5053.2020.000087
Chao LIU, Wenguang LIU. Modal frequency analysis of metallic-ceramic functionally graded plates[J]. Journal of Aeronautical Materials, 2020, 40(5): 88-95. doi: 10.11868/j.issn.1005-5053.2020.000087
Citation: Chao LIU, Wenguang LIU. Modal frequency analysis of metallic-ceramic functionally graded plates[J]. Journal of Aeronautical Materials, 2020, 40(5): 88-95. doi: 10.11868/j.issn.1005-5053.2020.000087

金属陶瓷功能梯度板的模态频率分析

doi: 10.11868/j.issn.1005-5053.2020.000087
基金项目: 国家自然科学基金(51965042);江西省自然科学基金(20181BAB206023)
详细信息
    通讯作者:

    刘文光(1978—),男,博士,副教授,主要从事结构动力学及疲劳寿命预测研究,E-mail:liuwg14@nchu.edu.cn

  • 中图分类号: TH212

Modal frequency analysis of metallic-ceramic functionally graded plates

  • 摘要: 金属陶瓷功能梯度材料因其良好的耐热特性和高强度性能,在飞行器壁板的热防护系统设计中具有潜在的应用价值。以功能梯度板为对象,研究陶瓷体积分数指数、板的几何尺寸和热环境等参数对功能梯度板模态频率的影响。首先,采用幂律分布函数材料模型,讨论热环境对功能梯度材料物理特性的影响;在此基础上,利用温度在有限元中随空间位置连续变化的特点,建立依赖温度场变化的功能梯度材料板线性分层有限元模型,并验证该模型在动力学分析中的有效性;最后,分析陶瓷体积分数指数、功能梯度板的长宽比、温度梯度等变量对功能梯度板模态频率的影响。结果表明:高阶模态频率受均匀温度场的影响最大,而第一阶模态频率受线性和非线性温度场的影响更大;线性和非线性温度场下,陶瓷体积分数指数对模态频率下降率的影响最为敏感;均匀温度场下模态频率下降率主要受体积分数指数和温度梯度耦合作用的影响。

     

  • 图  1  FGMs板模型

    Figure  1.  FGMs plate model

    图  2  FGMs板的分层建模方法

    Figure  2.  Modeling principle of FGMs plate

    图  3  三种温升下沿厚度方向温度场的分布

    Figure  3.  Distribution of temperature field along thickness direction under three temperature rises

    图  4  热环境对弹性模量的影响 (a)均匀温度场;(b)线性温度场;(c)非线性温度场

    Figure  4.  Effects of thermal environment on Young’s modulus (a) uniform temperature field;(b) linear temperature field;(c)nonlinear temperature field

    图  5  均匀温升下FGMs板前6阶模态频率对比 

    Figure  5.  Comparisons of the first six modal frequencies for FGMs plate subjected to uniform temperature rise

    图  6  模态频率的收敛性

    Figure  6.  Convergence of modal frequencies

    图  7  陶瓷体积分数指数和长宽比对模态频率的影响 (a)均匀温度场;(b)线性温度场;(c)非线性温度场

    Figure  7.  Effects of volume fraction index and aspect ratio on the modal frequencies (a)uniform temperature field;(b)linear temperature field;(c)nonlinear temperature field

    图  8  温度梯度和长宽比对模态频率的影响 (a)均匀温度场;(b)线性温度场;(c)非线性温度场

    Figure  8.  Effects of temperature gradient and aspect ratio on the modal frequencies (a)uniform temperature field;(b)linear temperature field;(c)nonlinear temperature field

    图  9  陶瓷体积分数指数和温度梯度对模态频率的影响 (a)均匀温度场;(b)线性温度场;(c)非线性温度场

    Figure  9.  Effects of volume fraction index and temperature gradient on the modal frequencies (a)uniform temperature field;(b)linear temperature field;(c)nonlinear temperature field

    图  10  热环境对模态下降率的影响 (a)均匀温度场;(b)线性温度场;(c)非线性温度场

    Figure  10.  Effects of thermal environment on the decrease ratio of modal frequencies (a)uniform temperature field;(b)linear temperature field;(c)nonlinear temperature field

    表  1  SUS304和Si3N4温敏特性系数[25]

    Table  1.   Temperature-dependent coefficients of SUS304 and Si3N4[25]

    Parameter Material α-1α3 α0 α1 α2
    Density,ρ SUS304 0 8166.00 0 0
    Si3N4 0 2370.00 0 0
    Young’s modulus,E SUS304 0 201.04 3.079 × 10-4 –6.534 × 10–7
    Si3N4 0 348.43 –3.070 × 10–4 2.160 × 10–7
    Heat transfer coefficient,β SUS304 0 12.04 0 0
    Si3N4 0 9.19 0 0
    Poisson’s ratio,ʋ SUS304 0 0.33 –2.002 × 10–4 0
    Si3N4 0 0.24 0 0
    下载: 导出CSV
  • [1] 杨琼梁. 超声速飞行器烧蚀与结构热耦合计算及气动伺服弹性分析[D].上海: 复旦大学, 2011.

    YANG Q L. Calculation of ablation and thermal coupling of supersonic aircraft and analysis of aero-servoelasticity [D]. Shanghai: Fudan University, 2011.
    [2] 冯志海,师建军,孔磊,等. 航天飞行器热防护系统低密度烧蚀防热材料研究进展[J]. 材料工程,2020,48(8):14-24.

    FENG Z H,SHI J J,KONG L,et al. Research progress in low-density ablative materials for thermal protection system of aerospace flight vehicles[J]. Journal of Materials Engineering,2020,48(8):14-24.)
    [3] 杨斌,李云龙,王世杰,等. 拉应力下碳纳米管增强高分子基复合材料的应力分布[J]. 材料工程,2020,48(2):79-86.

    YANG B,LI Y L,WANG S J,et al. Stress distribution of carbon nanotube reinforced polymer matrix composites under tensile stress[J]. Journal of Materials Engineering,2020,48(2):79-86.)
    [4] 何宗倍,张瑞谦,付道贵,等. 不同界面SiC纤维束复合材料的拉伸力学行为[J]. 材料工程,2019,47(4):25-31.

    HE Z B,ZHANG R Q,FU D G,et al. Tensile mechanical behavior of SiC fiber bundle reinforced composites with different interfaces[J]. Journal of Materials Engineering,2019,47(4):25-31.)
    [5] KOIZUMI M. FGM activities in Japan[J]. Composites Part B,1997,28(1/2):1-4.
    [6] 仲政,吴林志,陈伟球. 功能梯度材料与结构的若干力学问题研究进展[J]. 力学进展,2010,40(5):528-541.

    ZHONG Z,WU L Z,CHEN W Q. Progress in the study on mechanics problems of functionally graded materials and structures[J]. Advances in Mechanics,2010,40(5):528-541.)
    [7] 曹洲,郝育新,顾晓军,等. 热环境下功能梯度夹层双曲壳自由振动分析[J]. 固体力学学报,2018,39(3):284-295.

    CAO Z,HAO Y X,GU X J,et al. Free vibration of functionally graded doubly-curved sandwich shell in thermal environment[J]. Chinese Journal of Solid Mechanics,2018,39(3):284-295.)
    [8] 刘文光,舒斌,郭隆清,等. 热环境对FGM壳模态频率的影响[J]. 振动与冲击,2017,36(4):127-131.

    LIU W G,SHU B,GUO L Q,et al. Impacts of thermal environment on modal frequency of FGM shells[J]. Journal of Vibration and Shock,2017,36(4):127-131.)
    [9] 陈金晓,梁斌. 弹性边界条件下的功能梯度圆柱壳振动特性研究[J]. 船舶力学,2017,21(7):880-887.

    CHEN J X,LIANG B. Study on the vibration of functionally graded material cylindrical shells under elastic boundary conditions[J]. Journal of Ship Mechanics,2017,21(7):880-887.)
    [10] SHAHRJERDI A,YAVARI S. Free vibration analysis of functionally graded graphene reinforced nanocomposite beams with temperature dependent properties[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2018,40(1):1-15. doi: 10.1007/s40430-017-0921-7
    [11] ZAHEDINEJAD P. Free vibration analysis of functionally graded beams resting on elastic foundation in thermal environment[J]. International Journal of Structural Stability and Dynamics,2015,16(7):1550029-1-1550029-22.
    [12] CHAKRAVERTY S,PRADHAN K K. Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions[J]. Aerospace Science and Technology,2014,36:132-156. doi: 10.1016/j.ast.2014.04.005
    [13] 栾玮荻.热环境中功能梯度中厚圆板的自由振动[D]. 兰州: 兰州理工大学, 2017.

    LUAN W D. Free vibration of functionally graded moderately thick circular plates in thermal environment [D]. Lanzhou: Lanzhou University of Technology, 2017.
    [14] SHAHRJERDI A,MUSTAPHA F,BAYAT M,et al. Free vibration analysis of solar functionally graded plates with temperature dependent material properties using second order shear deformation theory[J]. Journal of Mechanical Science and Technology,2011,25(9):2195-2209. doi: 10.1007/s12206-011-0610-x
    [15] PARIDA S,MOHANTY S C. Free vibration analysis of functionally graded skew plate in thermal environment using higher order theory[J]. International Journal of Applied Mechanics,2018,10(1):504-533.
    [16] 吴晓,黄翀,杨立军,等. 功能梯度材料圆板的非线性热振动及屈曲[J]. 动力学与控制学报,2012,10(1):52-57. doi: 10.3969/j.issn.1672-6553.2012.01.012

    WU X,HUANG C,YANG L J,et al. Nonlinear thermal vibration and buckling of functionally graded circular plate[J]. Journal of Dynamics and Control,2012,10(1):52-57.) doi: 10.3969/j.issn.1672-6553.2012.01.012
    [17] ZHONG Z,CHENG Z. Fracture analysis of a functionally graded strip with arbitrary distributed material properties[J]. International Journal of Solids and Structures,2008,45(13):3711-3725. doi: 10.1016/j.ijsolstr.2007.09.023
    [18] 白晓明. 具有任意属性功能梯度材料的动态断裂模型[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    BAI X M. Dynamic fracture mechanics model of functionally graded materials with arbitrary properties [D]. Harbin: Harbin Institute of Technology, 2011.
    [19] 张雨晴,胡建军,马朝平. 基于有限元法的功能梯度材料分析概述[J]. 机械工程师,2017,12(12):10-13. doi: 10.3969/j.issn.1002-2333.2017.12.004

    ZHANG Y Q,HU J J,MA C P. Review on finite element analysis of functionally graded materials[J]. Mechanical Engineer,2017,12(12):10-13.) doi: 10.3969/j.issn.1002-2333.2017.12.004
    [20] 黄立新,姚祺,张晓磊,等. 基于分层法的功能梯度材料有限元分析[J]. 玻璃钢/复合材料,2013,2:43-48.

    HUANG L X,YAO Q,ZHANG X L,et al. Finite element analysis of functionally graded materials based on layering method[J]. FRP/CM,2013,2:43-48.)
    [21] 杨欢欢. 功能梯度材料静动态断裂力学参量研究及有限元程序设计[D]. 南京: 南京理工大学, 2015.

    YANG H H. Static and dynamic fracture mechanics parameters of functionally graded materials and finite element program [D]. Nanjing: Nanjing University of Science and Technology, 2015.
    [22] MALEKZADEH P,HEYDARPOUR Y. Free vibration analysis of rotating functionally graded cylindrical shells in thermal environment[J]. Composite Structures,2012,94(9):2971-2981. doi: 10.1016/j.compstruct.2012.04.011
    [23] 刘文光,丰霞瑶,姚婉. 功能梯度圆柱壳的热应力与热传导分析[J]. 航空材料学报,2019,39(6):81-89.

    LIU W G,FENG X Y,YAO W. Analysis on thermal stress and heat conduction of functionally graded cylindrical shell[J]. Journal of Aeronautical Materials,2019,39(6):81-89.)
    [24] 李清禄,段鹏飞,张靖华. 陶瓷基FGM材料线形变厚度圆板的热后屈曲[J]. 航空材料学报,2019,39(1):102-107.

    LI Q L,DUAN P F,ZHANG J H. Thermal post-buckling behavior of ceramic-based FGM circular plates with linear variable thickness[J]. Journal of Aeronautical Materials,2019,39(1):102-107.)
    [25] LI Q,IU V P,KOU K P. Three-dimensional vibration analysis of functionally graded material plates in thermal environment[J]. Journal of Sound and Vibration,2009,324:733-750.
    [26] NATARAJAN S,CHAKRABORTY S,GANAPATHI M,et al. A parametric study on the buckling of functionally graded material plates with internal discontinuities using the partition of unity method[J]. European Journal of Mechanics-A/Solids,2014,44:136-147. doi: 10.1016/j.euromechsol.2013.10.003
    [27] KIM Y W. Temperature dependent vibration analysis of functionally graded rectangular plates[J]. Journal of Sound and Vibration,2004,284(3):531-549.
    [28] YANG J,SHEN H S. Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environment[J]. Journal of Sound and Vibration,2002,255(3):579-602. doi: 10.1006/jsvi.2001.4161
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  3983
  • HTML全文浏览量:  2326
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-19
  • 修回日期:  2020-06-16
  • 网络出版日期:  2020-08-28
  • 刊出日期:  2020-10-01

目录

    /

    返回文章
    返回