显微组织对Ti-3Al-4.5V-5Mo钛合金拉伸变形行为的影响

李兴无 沙爱学 陈勃 储俊鹏

李兴无, 沙爱学, 陈勃, 储俊鹏. 显微组织对Ti-3Al-4.5V-5Mo钛合金拉伸变形行为的影响[J]. 航空材料学报, 2020, 40(5): 45-52. doi: 10.11868/j.issn.1005-5053.2020.000111
引用本文: 李兴无, 沙爱学, 陈勃, 储俊鹏. 显微组织对Ti-3Al-4.5V-5Mo钛合金拉伸变形行为的影响[J]. 航空材料学报, 2020, 40(5): 45-52. doi: 10.11868/j.issn.1005-5053.2020.000111
Xingwu LI, Aixue SHA, Bo CHEN, Junpeng CHU. Effect of microstructure on tensile deformation behavior of Ti-3Al-4.5V-5Mo titanium alloy[J]. Journal of Aeronautical Materials, 2020, 40(5): 45-52. doi: 10.11868/j.issn.1005-5053.2020.000111
Citation: Xingwu LI, Aixue SHA, Bo CHEN, Junpeng CHU. Effect of microstructure on tensile deformation behavior of Ti-3Al-4.5V-5Mo titanium alloy[J]. Journal of Aeronautical Materials, 2020, 40(5): 45-52. doi: 10.11868/j.issn.1005-5053.2020.000111

显微组织对Ti-3Al-4.5V-5Mo钛合金拉伸变形行为的影响

doi: 10.11868/j.issn.1005-5053.2020.000111
详细信息
    通讯作者:

    李兴无(1973—),男,博士,研究员,研究方向:钛合金材料及应用,联系地址:北京市81信箱(100095),E-mail:lxwdjh@163.com

Effect of microstructure on tensile deformation behavior of Ti-3Al-4.5V-5Mo titanium alloy

  • 摘要: 利用扫描电镜、X衍射仪和理论计算研究不同晶粒尺寸、晶体取向对Ti-3Al-4.5V-5Mo钛合金拉伸行为的影响。不同状态的合金丝材拉伸实验结果验证了在720~840 ℃退火后的拉伸真应力-真应变曲线上存在明显的宏观屈服点,屈服后出现应力跌落;在α相晶体取向均为<0001>丝织构特征时,晶粒尺寸的大小决定合金的宏观屈服强度,晶粒尺寸越大,宏观屈服强度越小;相对于<0001>丝织构,α相<$ {10\bar 10} $>丝织构的存在导致α相中产生较大的塑性变形,β相中内应力增加,合金宏观屈服强度降低。

     

  • 图  1  不同退火温度下Ⅰ号丝材的显微组织

    Figure  1.  Microstructures of wireⅠannealed at different temperatures  (a)720 ℃;(b)780 ℃;(c)840 ℃;(d)880 ℃

    图  2  不同退火温度下Ⅲ号丝材的显微组织[9]

    Figure  2.  Microstructures of wire Ⅲ annealed at different temperatures[9](a)780 ℃;(b)840 ℃

    图  3  Ⅰ号丝材经720 ℃退火后的α相织构 (a)横截面(0002)极图;(b)横截面($10 \bar 1 0$)极图;(c)φ2 = 0°截面ODF;(d)φ2 = 30°截面ODF

    Figure  3.  Texture of α phase in wire Ⅰannealed at 720 ℃  (a)(0002)pole figure;(b)($10 \bar 10 $) pole figure;(c)φ2 = 0° section of α ODF; (d)φ2 = 30° section of α ODF

    图  4  Ⅰ号丝材经840℃退火后的α相织构  (a)横截面(0002)极图;(b)横截面($10 \bar 10 $)极图;(c)φ2 = 0°截面ODF;(d)φ2 = 30°截面ODF

    Figure  4.  Texture of α phase in wireⅠannealed at 840℃  (a)(0002) pole figure;(b)($10 \bar 1 0$) pole figure; (c)φ2 = 0° section of α ODF; (d)φ2 = 30° section of α ODF

    图  5  Ⅱ号丝材经720 ℃退火后的α相织构  (a) 横截面(0002)极图;(b)横截面($10 \bar 1 0$)极图;(c) φ2 = 0°截面ODF;(d) φ2 = 30°截面ODF

    Figure  5.  Texture of α phase in wire Ⅱannealed at 720 ℃  (a)(0002) pole figure;(b)($10 \bar 10 $) pole figure; (c) φ2 = 0° section of α ODF; (d) φ2 = 30° section of α ODF

    图  6  Ⅱ号丝材经840 ℃退火后的α相织构  (a)横截面(0002)极图;(b)横截面($10 \bar 1 0$)极图;(c) φ2 = 0°截面ODF;(d) φ2 = 30°截面ODF

    Figure  6.  Texture of α phase in wireⅡannealed at 840 ℃  (a)(0002) pole figure;(b) ($10 \bar 10 $)pole figure; (c) φ2 = 0° section of α ODF; (d) φ2 = 30° section of α ODF

    图  7  Ⅰ号丝材不同退火温度下的真应力-真应变曲线

    Figure  7.  True stress-true strain tensile curves of wireⅠannealed at different temperatures

    图  8  Ⅱ号丝材不同退火温度下的真应力-真应变曲线

    Figure  8.  True stress-true strain tensile curves of wireⅡannealed at different temperatures

    图  9  Ti-3Al-4.5V-5Mo合金在拉伸变形过程的三个阶段[9]

    Figure  9.  Three stages in the process of tensile deformation of Ti-3Al-4.5V-5Mo alloy[9]

    图  10  不同温度退火下丝材的屈服强度

    Figure  10.  Yield strength of wires annealed at different temperatures

    图  11  不同α相丝织构合金的真应力–真应变曲线

    Figure  11.  True stress-true strain tensile curves of wires with different α phase textures

    表  1  Ti-3Al-4.5V-5Mo合金的化学成分(质量分数/%)

    Table  1.   Chemical composition of 8.0 mm diameter wire of Ti-3Al-4.5V-5Mo alloy (mass fraction/%)

    TiAlMoVCFeSiZr
    Bal.2.994.964.710.0340.060.05<0.10
    下载: 导出CSV
  • [1] TAMURA I, TOMOTA Y, OZAWA M. Strength and ductility of Fe-Ni-C alloys composed of austenite and martensite with various strength[C]//Proc. 3rd Int. Conf. on Strength of Metals and Alloys, Vol I. London: Inst Metals and Iron Steel Inst, 1973: 611-615.
    [2] 马鸣图. 延性二相合金变形力学研究进展[J]. 力学进展,1991,21(2):190-207. doi: 10.6052/1000-0992-1991-2-J1991-024

    MA M T. The progress in deformation on mechanics of alloys with two ductile phases[J]. Advances in Mechanics,1991,21(2):190-207.) doi: 10.6052/1000-0992-1991-2-J1991-024
    [3] ANKEM S,MARGOLIN H,GREENE C A,et al. Mechanical properties of alloys consisting of two ductile phases[J]. Progress in Materials Science,2006,51(5):632-709. doi: 10.1016/j.pmatsci.2005.10.003
    [4] SREERAMAMURTHY A,WILLIAM J J,SAMUEL C S. Recent advances on the deformation behavior of two-phase α+β titanium alloys[J]. Materials Science Forum,2019,50:55-59.
    [5] CHONG Y,DENG G Y,GAO S,et al. Yielding nature and Hall-Petch relationships in Ti-6Al-4V alloy with fully equiaxed and bimodal microstructures[J]. Scripta Materialia,2019,172:77-82. doi: 10.1016/j.scriptamat.2019.07.015
    [6] МОИСЕЕВ Н. Высокопрочный титановый сплав ВТ16 для производства деталей крепления методом холодного деформирования[J]. Металловед Терм Обраб Мет,2001(2):28-32.
    [7] FAN Z,MIODOWNIK A P. The deformation behaviour of alloys comprising two ductile phases-I. Deformation theory[J]. Acta Metallurgica et Materialia,1993,41(8):2403-2413. doi: 10.1016/0956-7151(93)90320-R
    [8] FAN Z,MIODOWNIK A P. The deformation behaviour of alloys comprising two ductile phases-II. Application of the theory[J]. Acta Metallurgica et Materialia,1993,41(8):2415-2423. doi: 10.1016/0956-7151(93)90321-I
    [9] LI X W,LU M X,SHA A X,et al. The tensile deformation behavior of Ti-3Al-4.5V-5Mo titanium alloy[J]. Materials Science and Engineering:A,2008,490:193-197. doi: 10.1016/j.msea.2008.01.086
    [10] 商顺利. 高弹高强钛合金结构与各向异性研究[D]. 北京: 北京有色金属研究总院, 2000.

    SHANG S L. Structure and anisotropy of titanium alloy with high elastic modulus and high strength [D]. Beijing: General Research Institute for Non-ferrous Metals, 2000.
    [11] ESHELBY J D. The determination of the elastic field of an ellipsoidal inclusion,and related problems[J]. Proceedings of the Royal Society,1957,A241:376-396.
    [12] ESHELBY J D. The elastic field outside an ellipsoidal inclusion[J]. Proceedings of the Royal Society,1959,A252:561-569.
    [13] TOMOTA Y,KUROKI K,MORI T,et al. Tensile deformation of two-ductile-phase alloys:flow curves of α-γ Fe-Cr-Ni alloys[J]. Materials Science and Engineering,1976,24:85-94. doi: 10.1016/0025-5416(76)90097-5
    [14] CHIA K H,JUNG K,CONRAD H. Dislocation density model for the effect of grain size on the flow stress of a Ti-15.2 at. % Mo-alloy at 4.2-650K[J]. Materials Science and Engineering:A,2005,409:32-38. doi: 10.1016/j.msea.2005.03.117
    [15] JAE I K,HEE Y K,TOMONARI I,et al. Effect of annealing temperature on microstructure and shape memory characteristics of Ti-22Nb-6Zr(at%)biomedical alloy[J]. Materials Transactions,2006,47(3):505-512. doi: 10.2320/matertrans.47.505
    [16] LI H,MASON D E,BIELER T R,et al. Methodology for estimating the critical resolved shear stress ratios of α-phase Ti using EBSD-based trace analysis[J]. Acta Metallurgica et Materialia,2013,61(20):75557567.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  3984
  • HTML全文浏览量:  2232
  • PDF下载量:  282
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-28
  • 修回日期:  2020-07-18
  • 网络出版日期:  2020-08-28
  • 刊出日期:  2020-10-01

目录

    /

    返回文章
    返回