Stability of interface between MgO and carbon nanotubes
-
摘要: 采用共沉积法制备氧化镁纳米颗粒包覆碳纳米管,并利用高功率超声波、长时间对氧化镁包覆碳纳米管样品进行超声处理以验证其结构稳定性。借助红外光谱仪、扫描电子显微镜和透射电子显微镜表征氧化镁包覆碳纳米管的微观结构。实验结果显示:高功率超声波和长时间超声震荡可将包覆氧化镁碳纳米管切断,但氧化镁纳米颗粒依然紧紧地吸附在碳纳米管管壁上,表明氧化镁纳米颗粒与碳纳米管形成了良好的界面结合,包覆MgO碳纳米管界面结构具有较高的稳定性,是一种较好的新型增强体。同时,采用第一性原理计算阐述了氧化镁与碳纳米管形成良好界面结合机理。Abstract: In this work, MgO-coated carbon nanotubes (MgO@CNTs) were synthesized via the co-deposition technique. The samples of MgO@CNTs were treated by using the high power ultrasonic vibration with a long time to verify their structural stability. Microstructure of the CNTs and MgO@CNTs was characterized by using the FI-IT spectra analysis, scanning electron microscope and transmission electron microscope. The experiment result reveals that the high power ultrasonic vibration and the long-time ultrasonic-treatment can easily cut off the CNTs, while the MgO nanoparticles are still tightly adsorbed on the surface of CNTs without removing away from the surface of CNTs by the ultrasonic vibration. It means that MgO@CNTs is a novel reinforcement for the Mg-based composite because the MgO nanoparticles and CNTs have formed a good interface bonding with high stability. Simultaneously, the stable interfacial bonding between MgO and CNTs is explained by the first- principle calculation.
-
Key words:
- MgO /
- carbon nanotubes /
- interfacial bonding
-
表 1 四种界面结构的界面间距和界面分离功的理论计算值
Table 1. Calculated d0 and Wsep values of the four interface models
Interface model Atomic arrangement d0/nm Wsep/(J•m2) OTH Top and hollow site 0.274 4.264 OB Bridge site 0.222 0.621 MTH Top and hollow site 0.243 −0.286 MB Bridge site 0.365 −0.286 -
[1] 汤琦,颜桐桐,孙豪,等. 动态硫化法制备多壁碳纳米管/热塑性硫化胶复合材料的相态结构及热电效应[J]. 材料导报,2021,35(6):6206-6211. doi: 10.11896/cldb.19110144TANG Q,YAN T T,SUN H,et al. Phase structure and thermo-electric effect of multi-walled carbon nanotubes/thermoplastic vulcanizate composites prepared by dynamic vulcanization[J]. Materials Reports,2021,35(6):6206-6211. doi: 10.11896/cldb.19110144 [2] 何阳,袁秋红,罗岚,等. 镁基复合材料研究进展及新思路[J]. 航空材料学报,2018,38(4):26-36. doi: 10.11868/j.issn.1005-5053.2018.001013HE Y,YUAN Q H,LUO L,et al. Current study and novel ideas on magnesium matrix composites[J]. Journal of Aeronautical Materials,2018,38(4):26-36. doi: 10.11868/j.issn.1005-5053.2018.001013 [3] 袁秋红,刘勇,周国华,等. 碳纳米管和石墨烯纳米片复合增强AZ91镁基复合材料组织与力学性能[J]. 精密成形工程,2020,12(5):37-46. doi: 10.3969/j.issn.1674-6457.2020.05.004YUAN Q H,LIU Y,ZHUO G H,et al. Microstructure and mechanical properties of Az91 alloy reinforced by carbon nanotubes and graphene nanosheets[J]. Journal of Netshape Forming Engineering,2020,12(5):37-46. doi: 10.3969/j.issn.1674-6457.2020.05.004 [4] 袁秋红,周国华,廖琳. 石墨烯纳米片/AZ91镁基复合材料的显微组织与力学性能[J]. 材料导报,2018,32(5):90-94. [5] YUAN Q H,ZENG X S,WANG Y C,et al. Microstructure and mechanical properties of Mg-4.0Zn alloy reinforced by NiO-coated CNTs[J]. Journal of Materials Science & Technology,2017,33(5):452-460. [6] SABA F,ZHANG F,SAJJADI S A,et al. Pulsed current field assisted surface modification of carbon nanotubes with nanocrystalline titanium carbide[J]. Carbon,2016,101(5):261-271. [7] PAHLAVAN A,GUPTA V K,SANATI A L,et al. ZnO/CNTs nanocomposite/ionic liquid carbon paste electrode for determination of noradrenaline in human samples[J]. Electrochimica Acta,2014,123(4):456-462. [8] LI J,ZHOU Y,XIAO X,WANG W,et al. Regulation of Ni-CNT Interaction on Mn-promoted nickel nanocatalysts supported on oxygenated CNTs for CO2 selective hydrogenation[J]. ACS Applied Materials & Interfaces,2018,48(48):41224-41236. [9] LI Z,YANG T,ZHAO W,et al. Structural modulation of Co catalyzed carbon nanotubes with Cu-Co bimetal active center to inspire oxygen reduction reaction[J]. ACS Applied Materials & Interfaces,2019,11(4):3937-3945. [10] FAN Z,WANG Y,XIA M,et al. Enhanced heterogeneous nucleation in AZ91D alloy by intensive melt shearing[J]. Acta Materialia,2009,57(16):4891-4901. doi: 10.1016/j.actamat.2009.06.052 [11] DU F P,TANG H,HUANG D Y. Thermal conductivity of epoxy resin reinforced with magnesium oxide coated multiwalled carbon nanotubes[J]. International Journal of Polymer Science,2013,15(9):1-5. [12] DU F,WU K,YANG Y,et al. Synthesis and electrochemical probing of water-soluble poly(sodium 4-styrenesulfonate-co-acrylic acid)-grafted multiwalled carbon nanotubes[J]. Nanotechnology,2008,19(8):085716. doi: 10.1088/0957-4484/19/8/085716 [13] 袁秋红. 碳纳米管增强AM60镁基复合材料的研究[D].南昌: 南昌大学, 2008.YUAN Q H. The research of Carbon nanotubes-reinforced AM60 magnesium matrix composites[D].Nanchang: Nanchang university, 2008. [14] YUAN Q H,ZENG X S,LIU Y,et al. Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO[J]. Carbon,2016,96:843-855. [15] 王小宇, 纳米氧化镁的制备及其红外吸收性能研究[D].沈阳: 东北大学, 2009.WANG XY. Preparation of nano-MgO and investigation of its infrared absorption properties[D].Shenyang: Northeastern University, 2009. [16] YANG H,WU S,DUAN Y,et al. Surface modification of CNTs and enhanced photocatalytic activity of TiO2 coated on hydrophilically modified CNTs[J]. Applied Surface Science,2012,258(7):3012-3018. doi: 10.1016/j.apsusc.2011.11.029 [17] ZHIHUA L,KANGNING S,SHUAI R,et al. Surface modification and dispersion of multi-walled carbon nanotubes[J]. Rare Metal Materials and Engineering,2007,36(6):100-103. [18] TSANG S C,CHEN Y K,HARRIS P J,et al. A simple chemical method of opening and filling carbon nanotubes[J]. Nature,1994,372(6502):159-162. doi: 10.1038/372159a0 [19] 邱立杰,张国富,王文广. 超声波振荡对碳纳米管形态的影响[J]. 石油化工高等学校学报,2013,26(3):57-62. doi: 10.3969/j.issn.1006-396X.2013.03.013QIU L J,ZHANG G F,WANG G W. The effects of ultrasonic oscillation on the form of carbon nanotubes[J]. Journal of Petrochemical Universtities,2013,26(3):57-62. doi: 10.3969/j.issn.1006-396X.2013.03.013 [20] LIU Z,HAN Q,LI J,HUANG W. Effect of ultrasonic vibration on microstructural evolution of the reinforcements and degassing of in situ TiB2p/Al–12Si–4Cu composites[J]. Journal of Materials Processing Technology,2012,212(2):365-371. doi: 10.1016/j.jmatprotec.2011.09.021 [21] RYOU J,HONG S. First-principles study of carbon atoms adsorbed on MgO(100)related to graphene growth[J]. Current Applied Physics,2013,13(2):327-330. doi: 10.1016/j.cap.2012.05.043 [22] SRIRANGARAJAN A,DATTA A,GANDI A N,et al. Universal binding energy relation for cleaved and structurally relaxed surfaces[J]. Journal of Physics Condensed Matter:an Institute of Physics Journal,2013,26(5):055006. -