Influence of constitutive model on calculation results of creep deformation response of notched specimen of GH4169 alloy
-
摘要: 针对航空发动机高温构件蠕变变形失效问题,基于大变形有限元分析方法,采用弹塑性耦合蠕变本构模型对650 ℃下GH4169合金光滑和缺口平板试件的弹塑性和蠕变变形响应进行计算,重点分析蠕变本构模型对试件蠕变变形响应和持久寿命的影响。研究结果表明:基于大变形有限元分析的方法能较好地预测三种缺口平板试件的弹塑性变形和极限强度,极限强度预测误差均在 ± 3%以内;三种蠕变本构模型对GH4169缺口平板试件蠕变变形响应和持久寿命的大变形有限元预测效果不一,采用θ参数法模型可较为准确地预测缺口试件的持久寿命,预测误差在 ± 2倍分散带以内,而采用修正蠕变模型和Batsoulas模型可较为准确地预测蠕变前两个阶段的变形。Abstract: In view of the creep deformation failure of areo-engine high temperature components, the elastoplastic and creep deformation response of GH4169 alloy smooth and notched plate specimens at 650 ℃ is calculated using elastoplastic coupled creep constitutive model based on the large deformation finite element analysis, to explore the influence of creep constitutive model selection on creep deformation response and creep rupture life calculation. The results show that the elastoplastic deformation response of notched plate specimens is well predicted by large deformation analysis, the elastoplastic deformation and ultimate strength of the three notched plate specimens are all well predicted, and the prediction error of ultimate strength is within ± 3%. Three creep models have different predictive effects on creep response and creep rupture life of notched plate specimens under large deformation finite element analysis. The θ-projection model is found to predict the rupture life of notched specimens more accurately within the factor of ± 2. While the modified creep model and the Batsoulas model can predict the deformation of the first two creep stages more accurately.
-
表 1 GH4169合金平板试件高温蠕变实验方案
Table 1. High temperature creep test scheme of GH4169 alloy plate specimen
Nominal stress of minimum section/MPa Smooth R1-notch R5-notch R20-notch 802 922 922 895 754 886 885 860 708 815 850 826 694 776 814 754 661 736 775 714 626 — 735 — 表 3 修正蠕变模型拟合参数值
Table 3. Fitting parameter values of modified creep model
c1 c2 c3 c4 c5 c6 c7 c8 1.96 6.73 –10.52 16.75 –9.26 1.0 × 10–5 19.32 –9.41 表 2 θ参数法模型拟合参数值
Table 2. Fitting parameter values of θ-projection model
a1 b1 a2 b2 a3 b3 a4 b4 –0.89 –1.1 × 10–4 –10.20 –9.7 × 10–3 –5.50 5.1 × 10–3 –2.05 2.4 × 10–3 表 4 Batsoulas模型拟合参数值
Table 4. Fitting parameter values of Batsoulas model
k l m n p q 2.5 × 108 1.3× 10–2 2.3 × 109 9.0 × 10–3 3.7 × 10–3 5.1 × 10–4 -
[1] 饶寿期. 航空发动机的高温蠕变分析[J]. 航空发动机,2004,30(1):10-13. doi: 10.3969/j.issn.1672-3147.2004.01.003RAO S Q. Analysis of high-temperature creep of aeroengines[J]. Aeroengine,2004,30(1):10-13. doi: 10.3969/j.issn.1672-3147.2004.01.003 [2] 田世藩,张国庆,李周,等. 先进航空发动机涡轮盘合金及涡轮盘制造[J]. 航空材料学报,2003,23(增刊 1):233-238.TIAN S F,ZHANG G Q,LI Z,et al. Disk superalloys and disk manufacturing technologies for advanced aeroengine[J]. Journal of Aeronautical Materials,2003,23(Suppl 1):233-238. [3] 叶文明,胡绪腾,马晓健,等. 基于大变形蠕变分析的持久寿命预测方法[J]. 航空材料学报,2016,36(4):78-83. doi: 10.11868/j.issn.1005-5053.2016.4.011YE W M,HU X T,MA X J,et al. Creep rupture life prediction based on analysis of large creep deformation [J]. Aeroengine,2016,36(4):78-83. doi: 10.11868/j.issn.1005-5053.2016.4.011 [4] 马晓健. 短寿命发动机结构高温强度分析方法研究[D].南京: 南京航空航天大学, 2012.MA X J. Research on life prediction methods for high temperature components in short life turbine engine[D]. Nanjing : Nanjing University of Aeronautics and Astronautics, 2012. [5] CHANG Y,XU H,NI Y Z,et al. Research on representative stress and fracture ductility of P92 steel under multiaxial creep[J]. Engineering Failure Analysis,2016,59:140-150. doi: 10.1016/j.engfailanal.2015.09.011 [6] GOYAL S,LAHA K,DAS C R,et al. Finite element analysis of uniaxial and multiaxial state of stress on creep rupture behavior of 2.25Cr-1Mo steel[J]. Materials Science and Engineering:A,2013,563:68-77. doi: 10.1016/j.msea.2012.11.038 [7] GOYAL S,LAHA K. Creep life prediction of 9Cr-1Mo steel under multiaxial state of stress[J]. Materials Science & Engineering:A,2014,615:348-360. [8] HYDE T H,XIA L,BECKER A A. Prediction of creep failure in aeroengine materials under multi-axial stress states[J]. International Journal of Mechanical Sciences,1996,38(4):385-403. doi: 10.1016/0020-7403(95)00063-1 [9] 曾铖,刘宇杰. 基于Time-Hardening蠕变模型和“骨点”应力方法预测P92钢缺口圆棒多轴蠕变寿命[J]. 机械强度,2019,41(2):447-451.ZENG C,LIU Y J. Prediction of multi-axial creep life for P92 steel notched bars based on time-hardening model and skeletal point stress method[J]. Journal of Mechanical Strength,2019,41(2):447-451. [10] LIU D S,ZHANG D X,LIANG J W,et al. Prediction of creep rupture life of a V-notched bar in DD6 Ni-based single crystal superalloy[J]. Materials Science & Engineering:A,2014,615:14-21. [11] 王延荣,程域钊,李宏新,等. 一种基于归一化参数的蠕变模型[J]. 航空动力学报,2017,32(3):683-688.WANG Y R,CHENG Y Z,LI H X,et al. A creep model based on normalized parameters[J]. Journal of Aerospace Power,2017,32(3):683-688. [12] 程域钊,王延荣,李宏新,等. 归一化参数蠕变模型的程序实现与验证[J]. 航空动力学报,2017,32(3):697-703.CHENG Y Z,WANG Y R,LI H X,et al. Implementation and validation of creep model based on normalized parameters[J]. Journal of Aerospace Power,2017,32(3):697-703. [13] 李宏新,王延荣,程域钊. 基于归一化参数模型的涡轮盘和涡轮叶片蠕变分析[J]. 航空发动机,2016,42(5):48-54.LI H X,WANG Y R,CHENG Y Z. Analysis of creep based on normalized-parameter model for turbine disk and blade[J]. Aeroengine,2016,42(5):48-54. [14] LU X,DU J,DENG Q,et al. Stress rupture properties of GH4169 superalloy[J]. Journal of Materials Research and Technology,2014,3(2):107-113. doi: 10.1016/j.jmrt.2014.03.003 [15] 韩雅芳,郑运荣. 航空发动机用高温材料的应用与发展[J]. 世界科技研究与发展,1998(6):67-71.HAN Y F,ZHENG Y R. Development and application of high temperature structural materials for aero-engines[J]. World Sci-Tech R& D,1998(6):67-71. [16] WILSHIRE B, OWEN D. Recent advances in creep and fracture of engineering materials and structures[M]. Pineridge: [s.n.], 1982. [17] BROWN S G R, EVANS R W,WILSHIRE B. Creep strain and creep life prediction for the cast nickel-based superalloy IN-100[J]. Materials Science and Engineering,1986,84:147-156. doi: 10.1016/0025-5416(86)90232-6 [18] YE W,HU X,SONG Y. A new creep model and its application in the evaluation of creep properties of a titanium alloy at 500 °C[J]. Journal of Mechanical Science and Technology,2020,34:2317-2326. doi: 10.1007/s12206-020-0507-7 [19] BATSOULAS N D. Mathematical description of the mechanical behavior of metallic materials under creep conditions[J]. Journal of Materials Science,1997,32(10):2511-2527. doi: 10.1023/A:1018533930076 [20] BATSOULAS N. D. Creep damage assessment and lifetime predictions for metallic materials under variable loading conditions in elevated temperature applications [J]. Steel Research International,2009,80(2):152-159. -