航空电磁超材料研究进展及发展建议

景致 张健

景致,张健. 航空电磁超材料研究进展及发展建议[J]. 航空材料学报,2023,43(6):44-51 doi: 10.11868/j.issn.1005-5053.2021.000098
引用本文: 景致,张健. 航空电磁超材料研究进展及发展建议[J]. 航空材料学报,2023,43(6):44-51 doi: 10.11868/j.issn.1005-5053.2021.000098
JING Zhi,ZHANG Jian. Research progress and development suggestions on aeronautical electromagnetic metamaterial[J]. Journal of Aeronautical Materials,2023,43(6):44-51 doi: 10.11868/j.issn.1005-5053.2021.000098
Citation: JING Zhi,ZHANG Jian. Research progress and development suggestions on aeronautical electromagnetic metamaterial[J]. Journal of Aeronautical Materials,2023,43(6):44-51 doi: 10.11868/j.issn.1005-5053.2021.000098

航空电磁超材料研究进展及发展建议

doi: 10.11868/j.issn.1005-5053.2021.000098
详细信息
    通讯作者:

    景致(1990—),男,硕士,高级工程师,主要从事隐身材料结构应用研究,联系地址:辽宁省沈阳市皇姑区塔湾街40号(110035),E-mail: 344497851@qq.com

  • 中图分类号: V259

Research progress and development suggestions on aeronautical electromagnetic metamaterial

  • 摘要: 电磁超材料是由亚波长微结构周期排列而成的人工复合材料,对电磁波有很强的传导调控作用或吸收作用,在航空武器装备隐身设计领域被广泛研究。本文首先介绍了电磁超材料的概念,综述了电磁调控型超材料、电磁吸收型超材料、主动可调型超材料和智能超材料的最新研究进展;然后介绍了航空电磁偏折超材料、电磁吸收超材料和频率选择超材料的隐身机理及应用研究现状,分析认为隐身机理丰富和可设计性强是电磁超材料有别于传统吸波材料的主要优势。从拓展吸波频谱、增强吸波性能、吸波智能可调三方面对电磁超材料提出发展建议,包括吸波频谱进一步向红外、激光、紫外波段拓展,宽频吸波性能进一步提升,吸波频带智能可调。

     

  • 图  1  电磁波绕过物体[6]

    Figure  1.  Electromagnetic wave bypassing a ball[6]

    图  2  电磁偏折超材料作用原理

    Figure  2.  Mechanism of electromagnetic deflection metamaterial

    图  3  电磁偏折超材料应用设想

    Figure  3.  Application assumption of electromagnetic deflection metamaterial

    图  4  超材料吸波结构示意图[25]

    Figure  4.  Schematic diagram of metamaterial wave absorbing structure[25]

    图  5  频率选择超材料S参数仿真结果

    Figure  5.  S-parameter simulation results of frequency-selective metamaterial

  • [1] VESELAGO V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Sov Phys Usp,1968,10(4):509-514. doi: 10.1070/PU1968v010n04ABEH003699
    [2] PENDRY J B,HOLDEN A J,ROBBINS D J,et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques,1999,47(11):2075-2084. doi: 10.1109/22.798002
    [3] SMITH D R,PADILLA W J,VIER D C,et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters,2000,84(18):4184-4187. doi: 10.1103/PhysRevLett.84.4184
    [4] PARAZZOLI C G,GREEGOR R B,LI K,et al. Experimental verification and simulation of negative index of refraction using Snell’s law[J]. Physical Review Letters,2003,90(10):107401. doi: 10.1103/PhysRevLett.90.107401
    [5] ELEFTHERIADES G V,ENGHETA N. Metamaterials:fundamentals and applications in the microwave and optical regimes[J]. Proceedings of the IEEE,2011,99(10):1618-1621. doi: 10.1109/JPROC.2011.2161808
    [6] PENDRY J B,SCHURIG D,SMITH D R. Controlling electromagnetic fields[J]. Science,2006,312(5781):1780-1782. doi: 10.1126/science.1125907
    [7] SCHURIG D,MOCK J J,JUSTICE B J,et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science,2006,314(5801):977-980. doi: 10.1126/science.1133628
    [8] LIU R P,JI C,MOCK J J,et al. Broadband ground-plane cloak[J]. Science,2009,323(5912):366-369. doi: 10.1126/science.1166949
    [9] HUANG Y Y,YAO Z H,HU F R,et al. Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region[J]. Carbon,2017,119:305-313. doi: 10.1016/j.carbon.2017.04.037
    [10] COMLEY A J. Laser beam zooming and deflection using a nonlinear metamaterial refracting medium[J]. EPJ Applied Metamaterials,2018,5:8. doi: 10.1051/epjam/2018003
    [11] HUANG C,PAN W,MA X,et al. Multi-spectral metasurface for different functional control of reflection waves[J]. Scientific Reports,2016,6:23291. doi: 10.1038/srep23291
    [12] LANDY N I,SAJUYIGBE S,MOCK J J,et al. A perfect metamaterial absorber[J]. Physical Review Letters,2008,100:207402. doi: 10.1103/PhysRevLett.100.207402
    [13] TAO H,BINGHAM C M,PILON D,et al. A dual band terahertz metamaterial absorber[J]. Journal of Physics D,2010,43(22):225102. doi: 10.1088/0022-3727/43/22/225102
    [14] LIU X,TYLER T,STARR T,et al. Taming the blackbody with infrared metamaterials as selective thermal emitters[J]. Physical Review Letters,2011,107(4):045901-045901. doi: 10.1103/PhysRevLett.107.045901
    [15] GRANT J,MA Y,SAHA S,et al. Polarization insensitive,broadband terahertz metamaterial absorber[J]. Optics Letters,2011,36(17):3476-3478. doi: 10.1364/OL.36.003476
    [16] ZHANG H B,ZHOU P H,DENG L W,et al. Frequency-dispersive resistance of high impedance surface absorber with trapezoid-coupling pattern[J]. Journal of Applied Physics,2012,112(1):207402.
    [17] ZHANG H B,ZHOU P H,LU H P,et al. Resistance selection of high impedance surface absorbers for perfect and broadband absorption[J]. IEEE Transactions on Antennas & Propagation,2013,61(2):976-979.
    [18] SALISBURY W W. Absorbent body for electromagnetic waves:US2599944 [P/OL]. (1952-06-10)[2022-9-27]. http//www. google. co. in/patents/ US2599944.
    [19] XIAO S Y,WANG T,LIU Y B,et al. An ultrasensitive and multispectral refractive index sensor design based on quad-supercell metamaterials[J]. Plasmonics,2017,12(1):185-191. doi: 10.1007/s11468-016-0248-8
    [20] XIAO S Y,WANG T,LIU Y B,et al. Tunable light trapping and absorption enhancement with graphene ring arrays[J]. Physical Chemistry Chemical Physics,2016,18(38):26661-26669. doi: 10.1039/C6CP03731C
    [21] LONG C,YIN S,WANG W,et al. Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode[J]. Scientific Reports,2016,6:21431. doi: 10.1038/srep21431
    [22] CEN C,CHEN J,LIANG C,et al. Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays[J]. Physica E-low-dimensional Systems and Nanostructures,2018,103:93-98. doi: 10.1016/j.physe.2018.05.033
    [23] KIM S,WAKATSUCHI H,RUSHTON J J,et al. Switchable nonlinear metasurfaces for absorbing high power surface waves[J]. Applied Physics Letters,2016,108(4):1516.
    [24] CHENG Z,QIANG C,JIN Y,et al. Broadband metamaterial for optical transparency and microwave absorption [J]. Applied Physics Letters,2017,110(14):722.
    [25] 礼嵩明,蒋诗才,望咏林,等. “超材料”结构吸波复合材料技术研究[J]. 材料工程,2017,45(11):10-14. doi: 10.11868/j.issn.1001-4381.2016.000152

    LI S M,JIANG S C,WANG Y L,et al. Study on “metamaterial” structure absorbing composite technology[J]. Journal of Materials Engineering,2017,45(11):10-14. doi: 10.11868/j.issn.1001-4381.2016.000152
    [26] 礼嵩明,吴思保,王甲富,等. 含超材料的新型蜂窝夹层结构吸波复合材料[J]. 航空材料学报,2019,39(3):94-99. doi: 10.11868/j.issn.1005-5053.2019.000052

    LI S M,WU S B,WANG J F. Novel honeycomb sandwich structure wave-absorbing composites with metamaterials[J]. Journal of Aeronautical Materials,2019,39(3):94-99. doi: 10.11868/j.issn.1005-5053.2019.000052
    [27] CUI T J,QI M,WAN X,et al. Coding metamaterials,digital metamaterials and programmable metamaterials [J]. Light:Sci Appl,2014,3(10):1-8.
    [28] CUI T J,LIU S,ZHANG L. Information metamaterials and metasurfaces[J]. Journal of Materials Chemistry C,2017,5(15):3644-3668. doi: 10.1039/C7TC00548B
    [29] WANG J F,QU S B,MA H,et al. Broadband and high-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces[J]. Applied physics letters,2012,101(20):1-4.
    [30] 韩亚娟,王甲富,李勇峰,等. 基于人工表面等离激元的天线研究进展[J]. 电波科学学报,2018,33(3):280-286. doi: 10.13443/j.cjors.2018041701

    HAN Y J,WANG J F,LI Y F,et al. Recent progresses of antennas based on spoof surface plasmon polaritons[J]. Chinese Journal of Radio Science,2018,33(3):280-286. doi: 10.13443/j.cjors.2018041701
    [31] 黄金国,郭宇,赵治亚,等. 基于有源超材料的可调超薄雷达吸波体研究[J]. 材料工程,2019,47(6):77-81. doi: 10.11868/j.issn.1001-4381.2017.000671

    HUANG J G,GUO Y,ZHAO Z Y,et al. Investigation on tunable ultra-thin radar absorber based on active metamaterial[J]. Journal of Materials Engineering,2019,47(6):77-81. doi: 10.11868/j.issn.1001-4381.2017.000671
    [32] 于相龙,周济. 智能超材料研究与进展[J]. 材料工程,2016,44(7):119-128. doi: 10.11868/j.issn.1001-4381.2016.07.020

    YU X L,ZHOU J. Research advance in smart metamaterials[J]. Journal of Materials Engineering,2016,44(7):119-128. doi: 10.11868/j.issn.1001-4381.2016.07.020
    [33] 蒋卫祥,田翰闱,宋超 ,等. 数字编码超表面:迈向电磁功能的可编程与智能调控[J]. 雷达学报,2022,11(6):1003-1019.

    JIANG W X,TIAN H W,SONG C,et al. Digital coding metasurfaces:toward programmable and smart manipulations of electromagnetic functions[J]. Journal of Radars,2022,11(6):1003-1019.
    [34] 刘晨阳,王国刚,潘多涛,等. 超材料智能表面在MIMO无线网络中辅助应用的仿真研究[J]. 电波科学学报,2023,38(2):325-333.

    LIU C Y,WANG G G,PAN D T,et al. Simulation research on auxiliary application of metamaterial smart surface in MIMO wireless network[J]. Chinese Journal of Radio Science,2023,38(2):325-333.
    [35] 沈杨,王甲富,张介秋,等. 基于超材料的雷达吸波材料研究进展[J]. 空军工程大学学报(自然科学版),2018,19(6):39-47.

    SHEN Y,WANG J F,ZHANG J Q,et al. Research progresses in radar absorbing materials based on meta-material[J]. Journal of Air Force Engineering University (Natural Science Edition),2018,19(6):39-47.
    [36] 院伟,杨进,王一龙,等. 宽带吸波超材料的研究进展[J]. 材料导报,2016,30(11):104-108.

    YUAN W,YANG J,WANG Y L,et al. Recent advances in broadband metamaterial absorbers[J]. Materials Review,2016,30(11):104-108.
    [37] SHELBY R A,SMITH D R,SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science,2001,292(5514):77-79. doi: 10.1126/science.1058847
    [38] MA H F,CUI T J. Three-dimensional broadband and broad-angle transformation-optics lens[J]. Nature Communications,2010,1(8):124.
    [39] ENGHETA N. Thin absorbing screens using metamaterial surfaces[C]∥Antennas & Propagation Society International Symposium. [S.l.]:IEEE,2002.
    [40] TRETYAKOV S A,MASLOVSKI S I. Thin absorbing for all incidence angle based on the use of a high-impedance surface[J]. Microwave and Optical Technology Letters,2003,38(3):175-178. doi: 10.1002/mop.11006
    [41] SIMMS S,FUSCO V. Thin radar absorber using artificial magnetic ground plane[J]. Electronics Letters,2005,41(24):1311-1313. doi: 10.1049/el:20053236
    [42] COSTA F,MONORCHIO A,MANARA G. Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces[J]. IEEE Transactions on Antennas and Propagation,2010,58(5):1551-1558. doi: 10.1109/TAP.2010.2044329
    [43] KAZEMZADEH A,KARLSSON A. On the absorption mechanism of ultra thin absorbers[J]. IEEE Transactions on Antennas and Propagation,2010,58(10):3310-3315. doi: 10.1109/TAP.2010.2055779
    [44] 邓光晟,陈文卿,余振春,等. 基于导电塑料膜的角度不敏感宽带超材料吸波体设计及制备[J]. 光学学报,2022,42(22):8.

    DENG G S,CHEN W Q,YU Z C,et al. Design and preparation of angle-insensitive broadband metamaterial absorber based on conductive plastic film[J]. Acta Optica Sinica,2022,42(22):8.
    [45] HUANG L,CHOWDHURY D R,RAMANI S,et al. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band[J]. Optics Letters,2012,37(2):154-156. doi: 10.1364/OL.37.000154
    [46] CUI Y X,XU J,FUNG K H,et al. A thin film broadband absorber based on multi-sized nanoantennas[J]. Applied Physics Letters,2011,99(25):193.
    [47] WU C,SHVETS G. Design of metamaterial surfaces with broadband absorbance[J]. Optics Letters,2012,37(2):308-310.
    [48] TENNANT A,CHAMBERS B. Adaptive radar absorbing structure with pin diode controlled active frequency selective surface[J]. Smart Materials & Structures,2004,13(1):122-125.
    [49] LIAO Z Q,GONG R Z,NIE Y,et al. Absorption enhancement of fractal frequency selective surface absorbers by using microwave absorbing material based substrates[J]. Photonics and Nanostructures-Fundamentals and Applications,2011,9(3):287-294.
    [50] LI M,XIAO S Q,BAI Y Y,et al. An ultrathin and broadband radar absorber using resistive FSS[J]. IEEE Antennas and Wireless Propagation Letters,2012,11:748-751. doi: 10.1109/LAWP.2012.2206361
    [51] XIA R,JING X F,GUI X C,et al. Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials[J]. Optical Materials Express,2017,7(3):977. doi: 10.1364/OME.7.000977
    [52] KHAN M I,FRAZ Q,TAHIR F A. Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle[J]. Journal of Applied Physics,2017,121(4):045103. doi: 10.1063/1.4974849
    [53] ZHENG Q,GUO C J,YUAN P L,et al. Wideband and high-efficiency reflective polarization conversion metasurface based on anisotropic metamaterials[J]. Journal of Electronic Materials,2018,47(2):2658-2666.
    [54] PARK J,KANG J,KIM S J,et al. Dynamic reflection phase and polarization control in metasurfaces[J]. Nano Letters,2016,17(1):407.
    [55] TAO Z,XIANG W,BAI C P,et al. Reconfigurable conversions of reflection,transmission,and polarization states using active metasurface[J]. Applied Physics Letters,2017,110(12):121901. doi: 10.1063/1.4979033
    [56] YANG J,ZHANG H F,ZHANG H,et al. Ultra-broadband absorber based on plasma metamaterials[J]. Laser & Optoelectronics Progress,2018,55(9):091602.
    [57] PHAM T L,XUAN K B,TUNG B S,et al. Origami-based stretchable bi-functional metamaterials:reflector and broadband absorber[J]. Journal of Physics D,2021,54(16):165111. doi: 10.1088/1361-6463/abdbe6
    [58] HAO L,YONG Z C. Design of an ultrabroadband visible metamaterial absorber based on three-dimensional metallic nanostructures[J]. Modern Physics Letters B,2017,31(6):1750231.
    [59] 张泽奎,王东红,王蓬,等. 基于电阻膜与超材料的超薄宽频吸波体设计[J]. 功能材料,2018,49(4):219-222.

    ZHANG Z K,WANG D H,WANG P,et al. Design of an ultrathin and wideband absorber based on resistance film and metamaterial[J]. Functional Materials,2018,49(4):219-222.
    [60] BIBI M,ABBAS S M,AHMAD N,et al. Microwaves absorbing characteristics of metal ferrite/multiwall carbon nanotubes nanocomposites in X-band[J]. Composites Part B,2017,114:139-148. doi: 10.1016/j.compositesb.2017.01.034
    [61] NARAYAN S,JHA R M. A novel metamaterial FSS-based structure for wideband radome applications[J]. Computers,Materials and Continua,2013,37(2):97-108.
    [62] TAN L H,RAHIM S,NAWABJAN A,et al. A metamaterial-based dual-band frequency selective surface using composite material[C]// 2019 6th International Conference on Space Science and Communication (IconSpace). [S. l. ]:IEEE,2019.
    [63] CUI K,SHI D,SUN C,et al. A compact and high-performance shielding enclosure by using metamaterial design[J]. Applied Computational Electromagnetics Society journal,2021,36(11):1484-1491.
  • 加载中
图(5)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  39
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-11
  • 修回日期:  2021-09-10
  • 刊出日期:  2023-12-08

目录

    /

    返回文章
    返回

    《航空材料学报》关于谨防假冒期刊的郑重声明

    近期,有不法分子冒充《航空材料学报》期刊及官网,谎称提供论文发表服务,发布虚假约稿信息,骗取作者发表费用,为此,本编辑部郑重声明如下:

    1、http://www.hkclxb.cn 为假冒网站,与《航空材料学报》没有任何关系。我刊没有委托任何第三方机构或个人,代表我刊约稿或提供发表服务。

    2、《航空材料学报》为中文期刊,只接收中文文章投稿,目前不刊登英文文章。

    3. 本刊官网是http://jam.biam.ac.cn/,本刊的官方投稿方式为网上投稿(登录官网首页—作者投稿)。如有不明可电话咨询,联系电话是010-62496277。

    敬请广大读者和作者认真识别,谨防上当受骗。