高低温循环-湿度-荷载耦合作用对碳纤维/环氧树脂复合材料拉伸性能的影响

石建军 任银银 贾彬 刘曹锐 张佳贺

石建军, 任银银, 贾彬, 刘曹锐, 张佳贺. 高低温循环-湿度-荷载耦合作用对碳纤维/环氧树脂复合材料拉伸性能的影响[J]. 航空材料学报, 2022, 42(6): 97-106. doi: 10.11868/j.issn.1005-5053.2021.000193
引用本文: 石建军, 任银银, 贾彬, 刘曹锐, 张佳贺. 高低温循环-湿度-荷载耦合作用对碳纤维/环氧树脂复合材料拉伸性能的影响[J]. 航空材料学报, 2022, 42(6): 97-106. doi: 10.11868/j.issn.1005-5053.2021.000193
SHI Jianjun, REN Yinyin, JIA Bin, LIU Caorui, ZHANG Jiahe. Coupling effect of high and low temperature cycle-humidity-load on tensile properties of carbon fiber/epoxy composites[J]. Journal of Aeronautical Materials, 2022, 42(6): 97-106. doi: 10.11868/j.issn.1005-5053.2021.000193
Citation: SHI Jianjun, REN Yinyin, JIA Bin, LIU Caorui, ZHANG Jiahe. Coupling effect of high and low temperature cycle-humidity-load on tensile properties of carbon fiber/epoxy composites[J]. Journal of Aeronautical Materials, 2022, 42(6): 97-106. doi: 10.11868/j.issn.1005-5053.2021.000193

高低温循环-湿度-荷载耦合作用对碳纤维/环氧树脂复合材料拉伸性能的影响

doi: 10.11868/j.issn.1005-5053.2021.000193
基金项目: 结冰与防除冰重点实验室开放课题(IADL20190402);四川省自然科学基金(2022NSFSC0317)
详细信息
    通讯作者:

    石建军(1985—),男,博士,副教授,研究方向为复合材料力学与多物理场耦合仿真,联系地址:四川省绵阳市涪城区青龙大道59号西南科技大学土木工程与建筑学院(621010),E-mail:stevenarmy@163.com

  • 中图分类号: TB332

Coupling effect of high and low temperature cycle-humidity-load on tensile properties of carbon fiber/epoxy composites

  • 摘要: 研究环氧树脂基碳纤维增强复合材料(EP-CFRP)在荷载及恶劣环境共同作用下的耐久性能。环境因素为 −40~40 ℃ / −40~25 ℃ 2种区间的高低温循环以及湿度(有水浸泡及无水)的影响,荷载为极限荷载的30%和60%。结果表明:“高低温循环-湿度”双因素耦合作用后及“高低温循环-湿度-荷载”三因素耦合作用对EP-CFRP的耐久性影响较大,拉伸强度随高低温循环周期的增加整体呈现先降低再升高再降低的变化趋势,但是峰谷值出现的时间周期相差较大;湿度和荷载水平对EP-CFRP的拉伸模量影响较小;树脂基体与纤维界面产生的微裂纹被证明是导致复合材料后期强度降低的主要原因;湿度-荷载的耦合作用促进裂纹的扩展,加剧了EP-CFRP的损伤。根据损伤分析,采用非线性拟合的方法给出了“高低温循环-湿度-荷载”三因素耦合作用后EP-CFRP的剩余强度损伤模型。

     

  • 图  1  试件尺寸图

    Figure  1.  Dimensional drawing of test piece

    图  2  −40~40 ℃ 及 −40~25 ℃一个周期的温控曲线

    Figure  2.  Temperature control curve in one cycle of −40-40 ℃ and −40-25 ℃

    图  3  弯曲加载装置

    Figure  3.  Bend loading device

    图  4  典型工况破坏形貌

    Figure  4.  Damage morphology under typical working conditions

    图  5  拉伸强度、吸湿率与循环周期关系

    Figure  5.  Relationship of tensile strength, moisture absorption rate with cycle number

    图  6  弹性模量与循环周期关系

    Figure  6.  Relationship of elastic modulus with cycle number

    图  7  拉伸破坏形貌

    Figure  7.  Tensile failure morphology

    图  8  拉伸强度、吸湿率与循环周期关系

    Figure  8.  Relationship of tensile strength, moisture absorption rate with cycle number

    图  9  弹性模量与循环周期关系

    Figure  9.  Relationship of elastic modulus with cycle number

    图  10  拉伸强度、吸湿率与循环周期关系

    Figure  10.  Relationship of tensile strength, moisture absorption rate with cycle number

    图  11  弹性模量与循环周期关系

    Figure  11.  Relationship of elastic modulus with cycle number

    图  12  不同工况下,EP-CFRP在不同随循环次数下的剩余抗拉强度 (a)−40~40 ℃有水;(b)−40~40 ℃无水;(c)−40~25 ℃有水;(d)−40~40 ℃无水;

    Figure  12.  Residual tensile strength versus high and low temperature cycles under different conditions (a) −40-40 ℃+soak;(b)−40-40 ℃+anhydrous;(c)−40-25 ℃+soak;(d)−40-40 ℃+anhydrous.

    表  1  T700SC-12K碳纤维丝的性能指标

    Table  1.   Performance index of T700SC-12K carbon fiber yarn

    MaterialTensile
    strength / MPa
    Tensile
    modulus / GPa
    Fracture
    elongation / %
    Density /
    (g•cm3
    T700SC-12K49002302.11.8
    下载: 导出CSV

    表  2  FRD-YG-04环氧树脂预浸料的性能指标

    Table  2.   Performance index of FRD-YG-04 epoxy resin prepreg

    MaterialGlass transition
    temperature / ℃
    Tensile
    strength / MPa
    FRD-YG-04120-13078
    下载: 导出CSV

    表  3  软件拟合系数

    Table  3.   Software fit factor

    Working conditionCyclesHcdCorrelation coefficient
    −40-40 ℃Soak50.3376−0.0238−0.24481
    100.17150.0910−0.12411
    1000.52670.1564−2.10781
    2000.08080.19270.28071
    3000.38410.008−0.00821
    Anhydrous50.35080.0171−0.03511
    100.08840.5503−1.51×10-70.99
    1009.917170.234−0.29491
    2003.0219−3.24640.83040.99
    3000.45810.0123−0.01281
    −40-25 ℃Soak50.28160.0954−0.08681
    100.21070.1088−0.10350.99
    100−0.49840.4784−0.60001
    2000.6088−0.04050.013271
    3000.31110.04958−0.07561
    Anhydrous50.4600−0.10220.00140.99
    100.3402−0.04540.026371
    100−0.49840.8440−0.60000.97
    2000.6133-0.05020.00010.99
    3000.3878−0.058060.05421
    下载: 导出CSV

    表  4  应力影响系数

    Table  4.   Stress influence coefficient

    Working conditionHigh and low temperature circulation
    influence coefficient
    Stress influence factorCorrelation coefficient
    abcd
    −40~40 ℃Soak−0.02702.2153 0.0849−0.01930.93
    Anhydrous−0.07780.3540−0.4865 0.09751
    −40~25 ℃Soak 0.28190.7100 0.1383−0.17050.92
    Anhydrous 0.31590.7160 0.1176−0.10360.89
    下载: 导出CSV

    表  5  损伤模型

    Table  5.   Damage model

    Working conditionDamage model
    −40~40 ℃Soak$R(n) = {\sigma _{\text{0} } } - 0.23{\sigma _{\text{0} } }{{\rm{e}}^{\frac{0.0849}{- 0.0193 + s} } } ( - 0.0270)\tan (2.2153n)$
    Anhydrous$R(n) = {\sigma _{\text{0} } } - 0.23{\sigma _{\text{0} } }{{\rm{e}}^{\frac{ { - 0.4865} }{ {0.0975 + s} } } }( - 0.0778)\tan (0.3540n)$
    −40~25 ℃Soak$R(n)={\sigma }_{\text{0} }-0.23{\sigma }_{\text{0} }{{\rm{e}}}^{\frac{0.1383}{ -0.1705+s} }0.7100\mathrm{tan}(0.2819n)$
    Anhydrous$R(n) = {\sigma _{\text{0} } } - 0.23{\sigma _{\text{0} } }{{\rm{e}}^{\frac{0.1176}{- 0.1036+ s} } }0.3159\tan (0.7160n)$
    下载: 导出CSV
  • [1] GOGOI R,MAURYA A K,MANIK G. A review on recent development in carbon fiber reinforced polyolefin composites[J]. Composites Part C,2022,8:100279. doi: 10.1016/j.jcomc.2022.100279
    [2] 李洋洋. 空气热循环对T700/HT280复合材料力学性能的影响[D]. 沈阳: 沈阳航空航天大学, 2018, 23-24.

    LI Y Y. The effect of air thermal cycle on mechanical properties of T700/HT280 composites[D]. Shenyang: Shenyang Aerospace University , 2018, 23-24.
    [3] 刘佳琦. 环境因素对T700/HT280复合材料力学性能的影响[D]. 沈阳: 沈阳航空航天大学, 2017, 47-48.

    LIU J Q. The effects of environmental ageing on mechanical properties of T700/HT280 composites[D]. Shenyang: Shenyang Aerospace University , 2017, 47-48.
    [4] MENG J X,WANG Y,YANG H Y,et al. Mechanical properties and internal microdefects evolution of carbon fiber reinforced polymer composites: Cryogenic temperature and thermocycling effects[J]. Composites Science and Technology,2020,191:108083. doi: 10.1016/j.compscitech.2020.108083
    [5] LORD H W,DUTTA P K. On the design of polymeric composite structures for cold regions applications[J]. Journal of Reinforced Plastics and Composites,1989,20(3):292.
    [6] DE PARSCAU DU PLESSIX B,JACQUEMIN F,LEFEBURE P,et al. Characterization and modeling of the polymerization-dependent moisture absorption behavior of an epoxy-carbon fiber-reinforced composite material[J]. Journal of Composite Materials,2016,50(18):2495-2505. doi: 10.1177/0021998315606510
    [7] YALAGACH M,FUCHS P F,ANTRETTER T,et al. Thermal and moisture dependent material characterization and modeling of glass fiber reinforced epoxy laminates[J]. Sensors & Transducers,2021,248(1):1-9.
    [8] 熊明洋. 湿热环境对碳纤维树脂基层合板的力学性能影响研究[D]. 杭州: 浙江理工大学, 2016, 20-21.

    XIONG M Y. Study of the hygrothermal environment on mechanical properties of carbon fiber rein based laminates[D]. Hangzhou: Zhejiang Sci-Tech University, 2016, 20-21.
    [9] 于爱民,李趁趁,高丹盈,等. 恶劣环境下纤维增强聚合物片材拉伸性能[J]. 复合材料学报,2017,34(7):1496-1504. doi: 10.13801/j.cnki.fhclxb.20161024.003

    YU A M,LI C C,GAO D Y,et al. Tensile properties of fiber reinforced polymer sheet exposed to severe environment[J]. Acta Materiae Compositae Sinica,2017,34(7):1496-1504. doi: 10.13801/j.cnki.fhclxb.20161024.003
    [10] LI H,XIAN G J,LIN Q,et al. Freeze-thaw resistance of unidirectional-fiber-reinforced epoxy composites[J]. Journal of Applied Polymer Science,2012,123(6):3781-3788. doi: 10.1002/app.34870
    [11] 南田田,赵亮,孟玲宇,等. 湿-热-载荷共同作用下碳纤维增强环氧树脂基复合材料老化性能研究[J]. 纤维复合材料,2020,37(1):21-27. doi: 10.3969/j.issn.1003-6423.2020.01.005

    NAN T T,ZHAO L,MENG L Y,et al. Study on the aging performances of carbon fiber reinforced plastic composite under hygrothermal environment and loading[J]. Fiber Composites,2020,37(1):21-27. doi: 10.3969/j.issn.1003-6423.2020.01.005
    [12] 姜明.温湿场交变环境下外加载荷对CFRP结构与力学性能影响[D]. 哈尔滨: 哈尔滨工业大学. 2017, 63-64.

    JIANG M, Effect of external load on the structure and mechanical properties of CFRP under alternating temperature and humidity field[D]. Harbin: Harbin Institute of Technology, 2017, 63-64.
    [13] 中国国家标准化管理委员会.GB/T 3354—2014 定向纤维增强聚合物基复合材料拉伸性能试验方法[S]. 北京: 中国标准出版社, 2014.
    [14] 中国国家标准化管理委员会.GB/T 1462—2005 纤维增强塑料吸水性试验方法[S]. 北京: 中国标准出版社, 2005.
    [15] 中国航空工业总公司标准委员会.HB 7401—1996 树脂基复合材料层合板湿热环境吸湿试验方法[S]. [S.L.]: [s.n.], 1996.
    [16] 范金娟,刘杰,隋晓燕. 复合材料单向板的拉伸失效[J]. 失效分析与预防,2015,10(3):139-143. doi: 10.3969/j.issn.1673-6214.2015.03.002

    FAN J J,LIU J,SUI X Y. Tensile failure of unidirectional composite laminates[J]. Failure Analysis and Prevention,2015,10(3):139-143. doi: 10.3969/j.issn.1673-6214.2015.03.002
    [17] KHALILI S. M R, NAJAFI M, ESLAMI-FARSANI R. Effect of thermal cycling on the tensile behavior of polymer composites reinforced by basalt and carbon fibers[J]. Mechanics of Composite Materials,2017,52(6):807-816. doi: 10.1007/s11029-017-9632-5
    [18] 陈永务,张庆利,高禹,等. 真空热循环对T700/5224复合材料力学性能的影响[J]. 复合材料科学与工程,2012(3):31-37. doi: 10.3969/j.issn.1003-0999.2012.03.007

    CHEN Y W,ZHANG Q L,GAO Y,et al. Effect of vacuum thermal cycling on mechanical properties of T700/5224 composites[J]. Composites Science and Engineering,2012(3):31-37. doi: 10.3969/j.issn.1003-0999.2012.03.007
    [19] 罗健,石建军,贾彬,等. 低温暴露对碳纤维/环氧树脂复合材料拉伸力学性能的影响[J]. 复合材料学报,2012,37(12):3091-3101. doi: 10.13801/j.cnki.fhclxb.20200629.001

    LUO J,SHI J J,JIA B,et al. Effect of low temperature exposure on the tensile mechanical properties of carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica,2012,37(12):3091-3101. doi: 10.13801/j.cnki.fhclxb.20200629.001
    [20] WAN Y Z,WANG Y L,LUO H L,et al. Moisture absorption behavior of C3D/EP composite and effect of external stress[J]. Materials Science Engineering:A,2002,326(2):324-329. doi: 10.1016/S0921-5093(01)01501-5
    [21] 任慧韬,李杉,黄承逵. 冻融循环和荷载耦合作用下CFRP(碳纤维增强聚合物)片材的耐久性试验研究[J]. 工程力学,2010,27(4):202-207.

    REN H T,LI S,HUANG C K,et al. Study on durability of CFRP subjected to freeze-thaw cycle combined with sustained load[J]. Engineering Mechanics,2010,27(4):202-207.
    [22] 叶宏军, 詹美珍. T300/4211复合材料的使用寿命评估[J]. 材料工程, 1995 (10): 3-5.

    YE H J, ZHAN M Z, In-service durability prediction of T300/4211 composites[J]. Journal of Materials Engineering, 1995 (10): 3-5.
    [23] YAO W X,HIMMEL N. A new cumulative fatigue damage model for fibre-reinforced plastics[J]. Composites Science and Technology,2000,60(1):59-64. doi: 10.1016/S0266-3538(99)00100-1
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  28
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 录用日期:  2022-09-13
  • 修回日期:  2022-10-15
  • 刊出日期:  2022-12-02

目录

    /

    返回文章
    返回