Ni-Cd 合金镀层中Cd 含量对镀层耐蚀性能的影响

燕宝强 费敬银 张嫚 王俊 韩锡正 赵利娜

燕宝强, 费敬银, 张嫚, 王俊, 韩锡正, 赵利娜. Ni-Cd 合金镀层中Cd 含量对镀层耐蚀性能的影响[J]. 航空材料学报. doi: 10.11868/j.issn.1005-5053.2021.000196
引用本文: 燕宝强, 费敬银, 张嫚, 王俊, 韩锡正, 赵利娜. Ni-Cd 合金镀层中Cd 含量对镀层耐蚀性能的影响[J]. 航空材料学报. doi: 10.11868/j.issn.1005-5053.2021.000196
YAN Baoqiang, FEI Jingyin, ZHANG Man, WANG Jun, HAN Xizheng, ZHAO Lina. Effect of Cd2+ content in plating solution on composition and corrosion resistance of Ni-Cd alloy plating[J]. Journal of Aeronautical Materials. doi: 10.11868/j.issn.1005-5053.2021.000196
Citation: YAN Baoqiang, FEI Jingyin, ZHANG Man, WANG Jun, HAN Xizheng, ZHAO Lina. Effect of Cd2+ content in plating solution on composition and corrosion resistance of Ni-Cd alloy plating[J]. Journal of Aeronautical Materials. doi: 10.11868/j.issn.1005-5053.2021.000196

Ni-Cd 合金镀层中Cd 含量对镀层耐蚀性能的影响

doi: 10.11868/j.issn.1005-5053.2021.000196
详细信息
    通讯作者:

    费敬银(1962—),男,博士,副教授,主要研究金属材料的腐蚀与防护,联系地址:西北工业大学创新科技大厦A座705室,E-mail:jyfei@nwpu.edu.cn

  • 中图分类号: TQ323.5

Effect of Cd2+ content in plating solution on composition and corrosion resistance of Ni-Cd alloy plating

  • 摘要: 采用电刷镀的方法在钢铁构件表面镀覆一层 Ni-Cd 合金镀层,从而实现牺牲阳极和机械保护法的双重保护机制;采用控制变量法研究镀层中不同浓度的Cd2+对于镀层耐蚀性能的影响。通过极化曲线、电化学阻抗谱、全浸腐蚀实验以及盐溶液周浸实验分别测定不同Cd2+浓度下镀层的腐蚀电位、极化电阻以及耐蚀性能。结果表明:当Cd2+摩尔分数从0.5%~5 %变化时可以实现镉质量分数为15%~90%的 Ni~Cd 合金的共沉积;其中,当 Cd2+ 摩尔分数为4 % 时,即镀层中镉质量分数为69.40 %时,合金刷镀层的耐蚀性最好。

     

  • 图  1  合金镀层中 Ni、Cd 含量随镀液中 Cd2+ 摩尔分数的变化

    Figure  1.  Curves of mass fraction Ni-Cd in plating vs. mole fraction of Cd2+ in plating solution

    图  2  镀层微观形貌随镀液中Cd2+ 摩尔分数的变化  (a) 1%; (b) 2%; (c) 3%; (d) 4%; (e) 5%

    Figure  2.  Morphologies of the plating with different mole fractions of Cd2+ in plating solution  (a) 1%; (b) 2%; (c) 3%; (d) 4%; (e) 5%

    图  3  不同Cd2+摩尔百分数条件下Ni-Cd合金电刷镀层的极化曲线 (a)自腐蚀电位正于基体的样品的极化曲线;(b)自腐蚀电位负于基体的样品的极化曲线

    Figure  3.  Polarization curves of Ni-Cd alloy plating with different Cd2+ of mole fractions (a) polarization curves with a positive self-corrosion potential to the steel substrate; (b) polarization curves with a negative self-corrosion potential to the steel substrate

    图  4  不同Cd2+摩尔百分数条件下Ni-Cd合金电刷镀层的电化学阻抗谱 (a)波特图; (d)能斯特图

    Figure  4.  EIS spectrum of Ni-Cd alloy plating with different mole fractions of Cd2+  (a) Bode plots; (b) Nyquist plots

    图  5  3.5 %NaCl溶液中基体的微观腐蚀形貌 (a)1%; (b) 2%; (c) 4%; (d) 5%; (e) 基体

    Figure  5.  Corrosion morphologies in 3.5% NaCl solution of substrate and Ni-Cd plating brushed by different mole fractions of Cd2+  (a) 1%; (b) 2%; (c) 4%; (d) 5%; (e) substrate

    表  1  镀液组成

    Table  1.   Composition of plating solution

    ComponentConcentration/(g·L−1
    CdSO4•8/3H2O1.0-15
    NiSO4•6H2O220-235
    C6H5O7Na3•2H2O40
    NiCl2•6H2O30
    (NH4)2SO45
    C10H14N2O8Na2•2H2O15
    下载: 导出CSV

    表  2  不同Cd2+摩尔分数条件下Ni-Cd合金电刷镀层的腐蚀电化学参数

    Table  2.   Corrosion electrochemical parameters of Ni-Cd alloy plating with different mole fractions of Cd2+ in plating solution

    Mole fraction
    of Cd2+/%
    Mass fraction
    of Cd/%
    Ecorr/
    mV
    icorr/
    (μA·cm−2
    Pure Ni0−4034.351
    0.58.12−4044.177
    1.017.68−4013.775
    1.522.97−4526.081
    2.028.36−4595.934
    (Substrate)−46211.96
    2.536.05−4655.187
    3.045.62−5173.649
    3.562.73−4912.091
    4.069.40−5680.710
    4.585.64−7063.813
    5.083.20−6286.443
    (Pure Cd)100.00−83515.50
    下载: 导出CSV

    表  3  失重法表示的腐蚀速率结果

    Table  3.   Results of corrosion rate expressed by mass-loss method

    Mole fraction
    of Cd2+/%
    Mass
    loss /mg
    Test
    area /m2
    Immersion
    time /h
    Corrosion rate /
    (mg·m−2·h−1))
    0.55.450.041680.811
    1.04.230.041680.629
    1.57.150.041681.064
    2.08.750.041681.302
    2.58.650.041681.287
    3.07.400.041681.101
    3.53.300.041680.491
    4.03.130.041680.466
    4.58.000.041681.190
    5.08.030.041681.195
    (Substrate)14.720.041682.191
    下载: 导出CSV

    表  4  Ni-Cd合金电刷镀层及钢铁基体的周期浸蚀性能

    Table  4.   Periodic etching performance of Ni-Cd alloy plating and steel substrate

    Mole fraction
    of Cd2+/%
    Area corroded
    after 96 h
    Area corroded
    after 192 h
    0.525%30%
    1.010%20%
    1.515%20%
    2.020%30%
    2.525%40%
    3.020%50%
    3.530%40%
    4.05%10%
    4.530%45%
    5.040%55%
    Substrate50%80%
    下载: 导出CSV
  • [1] ZHANG J F,WANG W. Technological standards for non-cyanide cadmium-titanium plating and their application[J]. Journal of Materials Protection,2009,42(12):57-58,62.
    [2] CLAIRE L,MARIE G,JULIEN G,et al. New architectured hybrid sol-gel coatings for wear and corrosion protection of low-carbon steel[J]. Progress in Organic Coatings,2016,99:337-345. doi: 10.1016/j.porgcoat.2016.06.015
    [3] BHAT R S,VENKATAKRISHNA K,NAYAK J,et al. Compositionally modulated multilayered Zn-Co deposits for better corrosion resistance[J]. Journal of Materials Engineering and Performance,2020,29(10):6363-6371. doi: 10.1007/s11665-020-05137-6
    [4] YANG Z W,NIE S H,LIU Y M,et al. Corrosion resistance of alternate coatings of Zn-Ni electroplating and electroless Ni-P plating[J]. Journal of Materials Protection,2003,36(11):12.
    [5] LIN X Z,YANG L,MEI Y J,et al. Corrosion electrochemical behavior beneath thin electrolyte layer of potassium formate solution of Cd-plated 4130 steel used for aircraft landing gear[J]. Journal of Chinese Society of Corrosion and Protection,2017,37(6):567-574.
    [6] KIM H,POPOV B N,CHEN K S. A novel electrodeposition process for plating Zn-Ni-Cd Alloys[J]. Journal of The Electrochemical Society,2003,150(2):C81. doi: 10.1149/1.1534599
    [7] DHANEMOZHI C,JOHN R,MURALI K R. Synthesis and characterization of ZnSxSe1-x films using brush plating technique[J]. Materials Today-Proceedings,2017,4(4):5185-5189. doi: 10.1016/j.matpr.2017.05.025
    [8] ZHAO J B,ZHAO Q Y,CHEN L H,et al. Effect of different surface treatments on corrosion behavior of 300M steel in Qingdao Marine Atmosphere[J]. Journal of Chinese Society of Corrosion and Protection,2019,39(6):504-510.
    [9] ZHANG F,XU C G,LAN H,et al. Corrosion behavior of an abradable seal coating system[J]. J Therm Spray Technol,2014,23(6):1019-1028. doi: 10.1007/s11666-014-0115-0
    [10] 毛喆,胡剑锋,黄红武,等. 对镀镉层防护不当的常见现象及防控措施[J]. 电镀与精饰,2021,43(2):47-50. doi: 10.3969/j.issn.1001-3849.2021.02.010

    MAO Z,HU J F,HUANG H W,et al. Common phenomena and prevention and control measures of improper protection of cadmium plating layer[J]. Plating & Finishing,2021,43(2):47-50. doi: 10.3969/j.issn.1001-3849.2021.02.010
    [11] PAATSCH W,KAUTEK W,SAHRE M. Corrosion behaviour and mechanical properties of plated Zn-alloys[J]. Trans Inst Metal Finish,1997,75:216-218. doi: 10.1080/00202967.1997.11871177
    [12] 李博,赵金航,肖细军. 电镀锌-镍合金替代镀镉、镀镉-钛工艺研究[J]. 电镀与精饰,2020,42(3):43-46. doi: 10.3969/j.issn.1001-3849.2020.03.009

    LI B,ZHAO J H,XIAO X J. Process research on electroplating of zinc-nickel alloy instead of cadmium plating and cadmium-titanium plating[J]. Plating & Finishing,2020,42(3):43-46. doi: 10.3969/j.issn.1001-3849.2020.03.009
    [13] 张旭,王锐,宋玉生,等. 4340合金钢电刷镀镉工艺的应用[J]. 腐蚀与防护,2014,35(10):1037-1039.

    ZHANG X,WANG R,SONG Y S. Application of electric-brush plating cadmium porcess to 4340 steel[J]. Corrosion & Protection,2014,35(10):1037-1039.
    [14] WANG Z X,BAO X H,REN J H. Equipments, bath compositions and applications of electro-brush plating[J]. Electroplationg & Finishing,2017,36(12):632-642.
    [15] ISERN L,IMPEY S,ALMOND H,et al. Structure zone diagram and particle incorporation of nickel brush plated composite coatings[J]. Scientific Reports,2017,7(1):44561. doi: 10.1038/srep44561
    [16] 曹强,汤智慧,程宗辉,等. 300M钢刷镀镉性能及在某型飞机起落架修理中的应用[J]. 装备环境工程,2016,13(1):39-44.

    CAO Q,TANG Z H,CHENG Z H,et al. Performance of electric-brush plating cadmium on 300M steel and application in landing gear repair for a certain type of aircraft[J]. Equipment Environmental Engineering,2016,13(1):39-44.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  6
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 修回日期:  2021-12-30
  • 网络出版日期:  2022-04-22

目录

    /

    返回文章
    返回