纤维增强复材C形圆台壳件固化变形的预测方法

陶裕梅 郑子君 邵家儒

陶裕梅, 郑子君, 邵家儒. 纤维增强复材C形圆台壳件固化变形的预测方法[J]. 航空材料学报. doi: 10.11868/j.issn.1005-5053.2021.000198
引用本文: 陶裕梅, 郑子君, 邵家儒. 纤维增强复材C形圆台壳件固化变形的预测方法[J]. 航空材料学报. doi: 10.11868/j.issn.1005-5053.2021.000198
TAO Yumei, ZHENG Zijun, SHAO Jiaru. Prediction method for curing deformation of conical C-shaped shell of fiber reinforced composite[J]. Journal of Aeronautical Materials. doi: 10.11868/j.issn.1005-5053.2021.000198
Citation: TAO Yumei, ZHENG Zijun, SHAO Jiaru. Prediction method for curing deformation of conical C-shaped shell of fiber reinforced composite[J]. Journal of Aeronautical Materials. doi: 10.11868/j.issn.1005-5053.2021.000198

纤维增强复材C形圆台壳件固化变形的预测方法

doi: 10.11868/j.issn.1005-5053.2021.000198
基金项目: 国家自然科学基金青年项目(11702046);重庆市教委科学研究项目(KJ1600910)
详细信息
    通讯作者:

    邵家儒(1986—),男,博士,副教授,主要从事机械CAE设计、流固耦合动力学方面的研究,联系地址:重庆市巴南区李家沱红光大道69号,E-mail:shaojiaru@cqut.edu.cn

  • 中图分类号: TB332

Prediction method for curing deformation of conical C-shaped shell of fiber reinforced composite

  • 摘要: 采用热压罐固化成形的纤维增强复合材料工件在脱模后通常与模具形状有一定出入,影响成型的精度和质量。为研究曲面零件固化变形规律,将C形圆台壳件的几何形状用母线长度、半高处半径、圆心角、半顶角、厚度五个参数表征,并基于虚功原理和小变形假设推导由于固化工艺中温度改变导致的形状变化公式。结果表明:固化后此类工件的厚度变薄,半高处半径缩小、圆心角增大、母线变短、顶角变小。与有限元模拟正交实验对比,验证了本公式的正确性;给出了基于path-dependent本构关系的固化变形有限元模拟的简化实现方案,与文献相比可以减少80%的计算时间,且实现难度较低。分别用本公式、热弹性有限元模型、path-dependent有限元模型计算某小型固定翼飞机的机头罩固化变形,预测半跨长平均缩小量分别是8.1 mm、7.6 mm、6.1 mm,均与实测值7.7 mm基本吻合;计算结果可以解释该零件的装配变形现象。

     

  • 图  1  固化温度工艺曲线以及固化参数随时间的变化

    Figure  1.  Curing temperature process curves and changes of curing parameters over time

    图  2  两种C形构件模型示意图 (a)圆壳模型;(b)圆台壳模型

    Figure  2.  Schematic diagrams of two C-shaped component models  (a) round shell model; (b) round pedestal shell model

    图  3  C形圆台壳的1/2有限元模型

    Figure  3.  Symmetrical finite element model of C-shaped circular pedestal shell

    图  4  C形圆台壳件几何参数变量的公式预测结果与有限元对比

    Figure  4.  Comparison of formula prediction results of geometric parameter variables of C-shaped circular truncated shell and finite element

    图  5  path-dependent本构模型示意图

    Figure  5.  Schematic diagram of path-dependent constitutive model

    图  6  C型构件回弹预测结果与实验、文献对比 (a) (90)n,(n=4,8,12,16) ;(b)(90/0)ns,(n=1,2,3,4)

    Figure  6.  Comparison of spring-in prediction results of C-shaped model with experiments and literatures (a) (90)n, (n=4,8,12,16); (b)(90/0)ns, (n=1,2,3,4)

    图  7  某小型固定翼飞机机头罩几何模型

    Figure  7.  Geometric model of nose cover of a small fixed-wing aircraft

    图  8  机头罩1/2模型固化变形云图及实验测量点

    Figure  8.  Curing deformation contour and experimental measurement points of symmetrical model of nose cover

    图  9  不同变形轮廓与实验测量结果的对比

    Figure  9.  Comparison of different deformation profiles with experimental measurement results

    图  10  机头罩1/2模型装配对称轴与侧沿后的变形云图(放大8倍)

    Figure  10.  Deformation contour of half of nose cover model after assembling symmetry axis and side edges (8 times magnification)

    图  11  某小型固定翼飞机机头罩安装后照片

    Figure  11.  Photo of a small fixed-wing aircraft after the installation of the hood

    表  1  正交实验变量及对应水平选择

    Table  1.   Orthogonal test variables and corresponding level selections

    LevelGeneratrix length
    $h/{\text{mm}}$
    Radius at half height
    $r/{\text{mm}}$
    Center angle
    $\theta /\left( {^{\text{o}}} \right)$
    Half apex angle
    $\phi /\left( {^{\text{o}}} \right)$
    ABCD
    1100100305
    22002006010
    33003009015
    下载: 导出CSV

    表  2  玻璃纤维增强树脂基复材(Hexcel7781/LY5052/ HY5052,$ V_{f}=0.49 $)的等效力学性能

    Table  2.   Equivalent mechanical properties of glass fiber reinforced resin-based composite material (Hexcel7781/LY5052/HY5052, $ V_{r}=0.49 $)

    StateEτ/GPaEn/GPaGττ/GPaGτn/GPaνττντnατ10–6/°Cαn10–6/°Cdβτ/∆Xτdβn/∆Xn
    Rubbery18.72.30.030.030.0020.8455.54264.8–7.95×10–5–3.5×10–2
    Glassy22.958.42.552.430.10.45515.266.4–3.65×10–4–2.2×10–2
    下载: 导出CSV

    表  3  3 mm厚C形模型的不同本构模型运行时间对比

    Table  3.   Comparison of time costs of different constitutive laws for C-section with 3 mm thickness

    ModelTime cost/s
    CHILE(α)182
    CHILE(Tg)185
    Path-dependent149
    Viscoelastic157
    Proposed model32
    下载: 导出CSV

    表  4  机头罩简化几何模型参数

    Table  4.   Simplified geometric model parameters of nose cover

    RadiusGeneratrix length, h/mmradius at half height, r/mmcenter angle,
    θ/(°)
    half apex angle,
    φ/(°)
    Minor radius7821315128
    Long radius278.580
    下载: 导出CSV
  • [1] 肖光明,赵安安,郭俊刚,等. 热固性树脂基复合材料固化变形控制及其应用[J]. 材料科学与工程学报,2018,36(6):883-887.

    XIAO G M,ZHAO A A,GUO J G,et al. Curing deformation control of thermoset resin matrix composite and its application[J]. Journal of Materials Science and Engineering,2018,36(6):883-887.
    [2] 王雪明,李韶亮,谢富原. 热压罐成型复合材料构件曲率半径对制造缺陷的影响规律[J]. 航空材料学报,2020,40(6):90-96. doi: 10.11868/j.issn.1005-5053.2019.000173

    WANG X M,LI S L,XIE F Y. Influence of curvature radius on manufacturing defect of composite component formed by autoclave[J]. Journal of Aeronautical Materials,2020,40(6):90-96. doi: 10.11868/j.issn.1005-5053.2019.000173
    [3] 王乾, 关志东, 蒋婷, 等, 纤维体积含量和富树脂对复合材料V型结构固化变形的影响[J]. 复合材料学报, 2018, 35(3): 580-590.

    WANG Q, GUAN Z D, JIANG T, et al. Influence of fiber volume content and resin-rich area on process distortions of V-shaped composite parts [J]. Acta Materiae Compositae Sinica, 2018, 35(3): 580-590.
    [4] 李桂洋,赵光辉,韩志昌,等. MT300/603复合材料工艺仿真与缺陷控制[J]. 航空材料学报,2018,38(4):115-122. doi: 10.11868/j.issn.1005-5053.2017.000002

    LI G Y,ZHAO G H,HAN Z C,et al. Defect control and curing process simulation for T700/603 composites[J]. Journal of Aeronautical Materials,2018,38(4):115-122. doi: 10.11868/j.issn.1005-5053.2017.000002
    [5] 胡海晓. 碳纤维增强热固性复合材料固化变形机理实验研究[D]. 武汉: 武汉理工大学, 2016.

    HU H X. Experimental study on curing deformation mechanism of carbon fiber reinforced thermosetting composites[D]. Wuhan: Wuhan University of Technology, 2016.
    [6] 邹尧, 蔡豫晋. 长桁类复材零件固化变形数值模拟与验证[J]. 航空制造技术, 2020, 63(增刊2): 94-101.

    ZOU Y, CAI Y J. Numerical simulation and verification of solidification deformation of long-truss composite parts[J]. Aeronautical Manufacturing Technology, 2020, 63(Suppl 2): 94-101.
    [7] 朱海华,张俐,余宁. 复合材料薄壁零件固化过程模拟及变形预测[J]. 塑性工程学报,2020,27(3):146-153. doi: 10.3969/j.issn.1007-2012.2020.03.020

    ZHU H H,ZHANG L,YU N. Simulation of curing process and deformation prediction for composite thin-walled parts[J]. Journal of Plasticity Engineering,2020,27(3):146-153. doi: 10.3969/j.issn.1007-2012.2020.03.020
    [8] 董丰路, 陈维强 , 周宓, 等. 截面形式对复合材料杆件固化变形的影响[J]. 南京航空航天大学学报, 2019, 51(增刊1): 18-21.

    DONG F L, CHEN W Q, ZHOU M, et al. Effect of section on process- induced deformation for composite pipe[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019 , 51(Suppl 1): 18-21.
    [9] BELLINI C,SORRENTINO L. Analysis of cure induced deformation of CFRP U-shaped laminates[J]. Composite Structures,2018,197:1-9.
    [10] JOHNSTON A, VAZIRI R, POURSARTIP A. A plane strain model for process induced deformation of laminated composite structures[J]. Compos Mater 2001, 35(16) : 1436-1469.
    [11] 梁群,冯喜平. 复合材料壳体固化成型过程残余应力和形变分析[J]. 固体火箭技术,2019,42(5):628-634.

    LIANG Q,FENG X P. Residual stress and structural distortion analysis for the curing process of SRM composite case[J]. Journal of Solid Rocket Technology,2019,42(5):628-634.
    [12] ERSOY N,GARSTKA T,POTTER K,et al. Modelling of the spring-in phenomenon in curved parts made of a thermosetting composite[J]. Composites Part A,2010,41:410-418. doi: 10.1016/j.compositesa.2009.11.008
    [13] DING A X,LI S X,WANG J H. A new path-dependent constitutive model predicting cure-induced distortions in composite structures[J]. Composites Part A,2017,95:183-196. doi: 10.1016/j.compositesa.2016.11.032
    [14] 黄尚洪,陈忠丽,刘平忠,等. 风电叶片叶根瓦模具的复合材料固化变形研究[J]. 复合材料科学与工程,2021(1):47-51. doi: 10.3969/j.issn.1003-0999.2021.01.007

    HUANG S H,CHEN Z L,LIU P Z,et al. Study on composite material curing deformation of root tile mould of wind power blade[J]. Composites Science and Engineering,2021(1):47-51. doi: 10.3969/j.issn.1003-0999.2021.01.007
    [15] 乔巍,姚卫星,马铭泽. 复合材料残余应力和固化变形数值模拟及本构模型评价[J]. 材料导报,2019,33(24):4193-4198. doi: 10.11896/cldb.18110061

    QIAO W,YAO W X,MA M Z. Numerical simulation and constitutive models evaluation of residual stresses and process induced deformations of composite structures[J]. Materials Review,2019,33(24):4193-4198. doi: 10.11896/cldb.18110061
    [16] 丁安心,李书欣,倪爱清,等. 热固性树脂基复合材料固化变形和残余应力数值模拟研究综述[J]. 复合材料学报,2017,34(3):471-485.

    DING A X,LI S X,NI A Q,et al. A review of numerical simulation of cure induced distortions and residual stresses in thermoset composites[J]. Acta Materiae Compositae Sinica,2017,34(3):471-485.
    [17] JIAO Y L,ZHONG B X,XIAO D R. Analysis and control of cured deformation of fiber-reinforced thermosetting composites: a review[J]. Journal of Zhejiang University-Science A,2019,20(5):311-333. doi: 10.1631/jzus.A1800565
    [18] ZHANG J,QIAO Y,ZHANG M,et al. Numerical analysis on process-induced residual stress in thick semi-cylindrical composite shell using a state-dependent viscoelastic model[J]. Applied Composite Materials,2019,26:519-532. doi: 10.1007/s10443-018-9722-0
    [19] KIM K S,HAHN H T. Residual stress development during processing of graphite/epoxy composites[J]. Composites Science and Technology,1989,36(2):121-132. doi: 10.1016/0266-3538(89)90083-3
    [20] ABOUHAMZEH M,SINKE J,JANSEN K M B,et al. Closed form expression for residual stresses and warpage during cure of composite laminates[J]. Composite Structures,2015,133:902-910. doi: 10.1016/j.compstruct.2015.07.098
    [21] RADFORDD W,DIEFENDORF R J. Shape instabilities in composites resulting from laminate anisotropy[J]. Journal of Reinforced Plastics and Composites,1993,12(1):58-75. doi: 10.1177/073168449301200104
    [22] RADFORD W,RENNICK T S. Separating sources of manufacturing distortion in laminated composites[J]. Journal of Reinforced Plastics and Composites,2000,19(8):621-641. doi: 10.1177/073168440001900802
    [23] WISNOM M,POTTER K,ERSOY N. Shear-lag analysis of the effect of thickness on spring-in of curved composites[J]. Journal of Composite Materials,2007,41:1311-1324. doi: 10.1177/0021998306068072
    [24] DING A,LI S,WANG J,et al. A new analytical solution for spring-in of curved composite parts[J]. Composites Science & Technology,2017,142:30-40.
    [25] SVANBERG J M,HOLMBERG J A. Prediction of shape distortions. Part Ⅱ. Experimental validation and analysis of boundary conditions submitted[J]. Composites Part A,2002,35:723-734.
    [26] 丁安心. 热固性树脂基复合材料固化变形数值模拟和理论研究[D]. 武汉: 武汉理工大学, 2016 .

    DING A X, Numerical and theoretical study on process-induced distortions in thermoset composites[D]. Wuhan: Wuhan University of Technology, 2016.
    [27] SVANBERG J M, Shape distortion of non-isothermally cured composite angle bracket[J]. Plastics, Rubber & Composites, 2002 , 31(9): 398-404.
    [28] SVANBERG J M,HOLMBERG J A. Prediction of shape distortions Part I. FE-implementation of a path dependent constitutive model[J]. Composites Part A,2004,35:711-721. doi: 10.1016/j.compositesa.2004.02.005
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  7
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 修回日期:  2022-01-10
  • 网络出版日期:  2022-04-22

目录

    /

    返回文章
    返回