十二股二维编织PBO绳索结构强度仿真分析

王哲 赵海涛 刘扬 陈吉安

王哲, 赵海涛, 刘扬, 陈吉安. 十二股二维编织PBO绳索结构强度仿真分析[J]. 航空材料学报. doi: 10.11868/j.issn.1005-5053.2021.000199
引用本文: 王哲, 赵海涛, 刘扬, 陈吉安. 十二股二维编织PBO绳索结构强度仿真分析[J]. 航空材料学报. doi: 10.11868/j.issn.1005-5053.2021.000199
WANG zhe, ZHAO Haitao, LIU Yang, CHEN Ji’an. Simulation analysis of structural strength of 12 -strand two-dimensional braided PBO rope[J]. Journal of Aeronautical Materials. doi: 10.11868/j.issn.1005-5053.2021.000199
Citation: WANG zhe, ZHAO Haitao, LIU Yang, CHEN Ji’an. Simulation analysis of structural strength of 12 -strand two-dimensional braided PBO rope[J]. Journal of Aeronautical Materials. doi: 10.11868/j.issn.1005-5053.2021.000199

十二股二维编织PBO绳索结构强度仿真分析

doi: 10.11868/j.issn.1005-5053.2021.000199
详细信息
    通讯作者:

    赵海涛(1977—),男,副研究员,研究方向为复合材料结构力学性能评价, E-mail:zht@sjtu.edu.cn

  • 中图分类号: V254.1

Simulation analysis of structural strength of 12 -strand two-dimensional braided PBO rope

  • 摘要: 二维编织绳索被广泛应用于工程、航空航天等诸多领域,其中十二股二维编织聚对苯并噁唑(PBO)绳索具有优良的性能。以十二股二维编织PBO绳索为研究对象,对绳索的编织规律和力学性能进行研究,借鉴圆形编织法,得到不同结径比的绳索的模型,对绳索模型截取代表性体积单元,施加周期性边界条件进行有限元仿真,并进行不同结径比的绳索拉伸实验,探究结径比对绳索强度的影响,将模拟结果与实验结果进行对比。结果表明:随着结径比增大,绳索承受的最大拉力先显著增大后基本不变;适当的结径比能使十二股二维编织绳索抗拉性能有效地发挥。

     

  • 图  1  圆形编织机和携纱器运行轨迹 (a)圆形编织机;(b)携纱器运行轨迹

    Figure  1.  Circular knitting machine and yarn carrier running track (a) Circular knitting machine;(b)yarn carrier running track

    图  2  绳索尺寸示意图 (a)绳索的外部尺寸;(b)绳索的内部尺寸

    Figure  2.  Schematic diagram of rope dimension (a) external dimension of rope;(b) internal dimension of rope

    图  3  不同结径比的绳索

    Figure  3.  Ropes with different knot diameter ratios

    图  4  绳索模型建立过程示意图 (a)纤维束中心线轨迹;(b)一股纤维束;(c)绳索模型

    Figure  4.  Schematic diagram of rope model building process (a) fiber bundle centerline trajectory;(b) a bundle of fibers;(c) rope model

    图  5  纤维束横截面为圆形的依据 (a)绳索横截面;(b)圆柱斜截面;(c)绳索模型横截面;(d)纤维束横截面

    Figure  5.  Basis for round fiber bundle cross section (a) rope cross section;(b) cylindrical oblique section;(c) rope model cross section;(d) fiber bundle cross section

    图  6  代表性体积单元强度有限元分析 (a)代表性体积单元;(b)有限元仿真模拟结果

    Figure  6.  Finite element analysis of representative volume element strength  (a) representative volume element;(b) finite element simulation results

    图  7  三角形面积坐标与直角坐标之间的关系

    Figure  7.  Relation between triangle area coordinates and cartesian coordinates

    图  8  材料损伤累积应力应变关系曲线

    Figure  8.  Cumulative stress-strain relationship curve of material damage

    图  9  绳索局部放大示意图

    Figure  9.  Schematic diagram of partial enlargement of rope

    图  10  绳索模型及其有限元分析结果 (a)纤维束直径相同、结径比依次增大的绳索模型;(b)仿真结果;(c)绳索模型能承受的最大拉力

    Figure  10.  Rope model and its finite element analysis results (a) rope model with the same fiber bundle diameter and increasing knot diameter ratio;(b) simulation results;(c) maximum tensile force that the rope model can bear

    图  11  模拟结果和实验结果对比

    Figure  11.  Comparison between simulation results and experimental results

    表  1  PBO纤维与其他高性能纤维的性能比较

    Table  1.   Performance comparison between PBO fiber and other high performance fibers

    FiberBreaking strength / (N / Tex)Modulus/GPaElongation at break/%Density/(g·cm³)
    PBO fiber3.702802.51.56
    Aramid fiber1.951092.41.45
    Carbon fibre2.052301.51.76
    下载: 导出CSV

    表  2  各绳索尺寸测量结果

    Table  2.   Measurement results of each rope size

    Serial numberRope diameter/mmLength of the knot/mmKnot diameter ratio
    14.03.20.8
    24.03.60.9
    34.04.01.0
    44.06.01.5
    54.08.02.0
    下载: 导出CSV

    表  3  不同花结长度的绳索模型能承受的最大拉力

    Table  3.   Maximum tensile strength of rope models with different knot lengths

    Knot diameter ratioMaximum tension, Fmax/N
    0.813962.6
    0.915662.7
    1.016682.2
    1.516970.8
    2.017053.0
    下载: 导出CSV

    表  4  绳索的拉伸实验结果

    Table  4.   Tensile test results of rope

    Knot diameter ratioSpecimen 1/NSpecimen 2/NSpecimen 3/NAverage/N
    0.813820.612854.613507.113394.1
    0.916083.314423.415202.615236.4
    1.016524.916324.716564.916471.5
    1.517571.117096.016812.617159.9
    2.017018.917419.017305.417247.8
    下载: 导出CSV
  • [1] 张爽,吴晓青,程勇. 二维编织理论研究进展[J]. 复合材料科学与工程,2017(08):102-109. doi: 10.3969/j.issn.1003-0999.2017.08.018

    ZHANG S,WU X Q,CHENG Y. Research progress of two-dimensional braiding theory[J]. Composite Materials Science and Engineering,2017(08):102-109. doi: 10.3969/j.issn.1003-0999.2017.08.018
    [2] 赵婷玉,魏金石,钟正祥,等. PBO纤维增强有机硅压敏胶的制备及性能研究[J]. 化学与粘合,2021,43(5):319-323. doi: 10.3969/j.issn.1001-0017.2021.05.001

    ZHAO T Y,WEI J S,ZHONG Z X,et al. Preparation and properties of PBO fiber reinforced silicone pressure sensitive adhesive[J]. Chemistry and Bonding,2021,43(5):319-323. doi: 10.3969/j.issn.1001-0017.2021.05.001
    [3] 冉茂强,付兴伟,许伟,等. PBO纤维拉伸性能测试的影响因素探讨[J]. 合成纤维工业,2016,39(2):70-73. doi: 10.3969/j.issn.1001-0041.2016.02.018

    RAN M Q,FU X W,XU W,et al. Discussion on influencing factors of tensile properties of PBO fiber[J]. Synthetic Fiber Industry,2016,39(2):70-73. doi: 10.3969/j.issn.1001-0041.2016.02.018
    [4] 刘姝瑞,张明宇,谭艳君,等. PBO纤维性能测试研究[J]. 纺织科学与工程学报,2020,37(4):34-42. doi: 10.3969/j.issn.2096-5184.2020.04.008

    LIU S R,ZHANG M Y,TAN Y J,et al. Study on properties of PBO fiber[J]. Journal of Textile Science and Engineering,2020,37(4):34-42. doi: 10.3969/j.issn.2096-5184.2020.04.008
    [5] ZHANG K,LIU X D,FISSEHA W A,et al. Probabilistic model for structural mechanics of fiber bundle and its application to PBO fiber[J]. The Journal of the Textile Institute,2021,112(1):138-143. doi: 10.1080/00405000.2020.1744237
    [6] 马晓红,檀江涛,秦志刚. 二维编织复合材料管件力学性能研究进展[J]. 复合材料科学与工程,2017,6:100-103.

    MA X H,TAN J T,QIN Z G. Research progress on mechanical properties of two-dimensional braided composite pipe fittings[J]. Composite Materials Science and Engineering,2017,6:100-103.
    [7] 王奇志,林慧星,许赟泉. 二维编织陶瓷基复合材料偏轴拉伸力学性能预测[J]. 复合材料学报,2018,35(12):3423-3432.

    WANG Q Z,LIN H X,XU F Q. Prediction of off - axis tensile properties of two - dimensional braided ceramic matrix composites[J]. Journal of Composite Materials,2018,35(12):3423-3432.
    [8] GU Y H,Zhang D T,Zhang Z W,et al. Torsion damage mechanisms analysis of two-dimensional braided composite tubes with digital image correction and X-ray micro-computed tomography[J]. Composite Structures,2021,256:1-11.
    [9] MIAO Y Y,ZHOU E,WANG Y Q,et al. Mechanics of textile composites: Micro-geometry[J]. Composites Science and Technology,2008,68:1671-1678. doi: 10.1016/j.compscitech.2008.02.018
    [10] 丁许,孙颖,魏雅斐,等. 芳纶纤维二维编织绳索的拉伸及应力松弛性能研究[J]. 产业用纺织品,2020,38(4):17-24. doi: 10.3969/j.issn.1004-7093.2020.04.004

    DING X,SUN Y,WEI Y F,et al. Study on tensile and stress relaxation properties of aramid fiber two-dimensional braided rope[J]. Industrial Textiles,2020,38(4):17-24. doi: 10.3969/j.issn.1004-7093.2020.04.004
    [11] 马晓红,檀江涛,秦志刚. 碳纤维二维编织管状织物的编织工艺[J]. 纺织学报,2018,39(6):64-69.

    MA X H,TAN J T,QIN Z G. The weaving technology of carbon fiber two-dimensional braided tubular fabric[J]. Journal of Textile Research,2018,39(6):64-69.
    [12] XU S,WANG S,LIU H X,et al. Experimental evaluation of the dynamic stiffness of synthetic fibre mooring ropes[J]. Applied Ocean Research,2021,112:1-18.
    [13] 魏雅斐,孙颖,丁许,等. 高性能纤维编织绳应变测试方法研究进展[J]. 产业用纺织品,2021,39(1):8-15. doi: 10.3969/j.issn.1004-7093.2021.01.002

    WEI Y F,SUN Y,DING X,et al. Research progress on strain measurement methods of high performance fiber braided rope[J]. Industrial Textiles,2021,39(1):8-15. doi: 10.3969/j.issn.1004-7093.2021.01.002
    [14] 韩雷,罗兆辉. 玄武岩纤维绳拉伸试验研究[J]. 天津城建大学学报,2021,26(6):416-420.

    HAN L,LUO Z H. Tensile test of basalt fiber rope[J]. Journal of Tianjin Urban Construction University,2021,26(6):416-420.
    [15] VU T D,DURVILLE D,DAVIES P. Finite element simulation of the mechanical behavior of synthetic braided ropes and validation on a tensile test[J]. International Journal of Solids and Structures,2015,58:106-116. doi: 10.1016/j.ijsolstr.2014.12.022
    [16] 杨超越,肖志杰,高翼强. 玄武岩二维编织结构复合材料力学性能研究[J]. 复合材料科学与工程,2020(3):114-119. doi: 10.3969/j.issn.1003-0999.2020.03.019

    YANG C Y,XIAO Z J,GAO Y Q. Study on mechanical properties of basalt two-dimensional braided structure composites[J]. Composite Materials Science and Engineering,2020(3):114-119. doi: 10.3969/j.issn.1003-0999.2020.03.019
    [17] 王永强,王益轩,刘静,等. 创新的五月柱型编织机参数化结构设计[J]. 纺织器材,2017,44(6):15-19. doi: 10.3969/j.issn.1001-9634.2017.06.004

    WANG Y Q,WANG Y X,LIU J,et al. Innovative parametric structural design of May column knitting machine[J]. Textile Equipment,2017,44(6):15-19. doi: 10.3969/j.issn.1001-9634.2017.06.004
    [18] 张振龙,李冬梅,于洋. PBO纤维基本力学性能试验研究[J]. 纤维复合材料,2009(4):9-11. doi: 10.3969/j.issn.1003-6423.2009.04.003

    ZHANG Z L,LI D M,YU Y. Experimental study on basic mechanical properties of PBO fiber[J]. Fiber Composites,2009(4):9-11. doi: 10.3969/j.issn.1003-6423.2009.04.003
    [19] 张超,许希武,严雪. 纺织复合材料细观力学分析的一般性周期性边界条件及其有限元实现[J]. 航空学报,2013,34(7):1636-1645.

    ZHANG C,XU X W,YAN X. General periodic boundary conditions and finite element realization for meso-mechanical analysis of textile composites[J]. Acta Aeronautica et Astronautica Sinica,2013,34(7):1636-1645.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  29
  • HTML全文浏览量:  10
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 修回日期:  2022-01-20
  • 网络出版日期:  2022-04-22

目录

    /

    返回文章
    返回