不同激光加工工艺的DD406单晶高温合金气膜孔高温氧化行为

杨一哲 杨昭 赵云松 裴海清 李萌 杨艳秋 温志勋 岳珠峰

杨一哲, 杨昭, 赵云松, 裴海清, 李萌, 杨艳秋, 温志勋, 岳珠峰. 不同激光加工工艺的DD406单晶高温合金气膜孔高温氧化行为[J]. 航空材料学报, 2022, 42(2): 29-40. doi: 10.11868/j.issn.1005-5053.2022.000010
引用本文: 杨一哲, 杨昭, 赵云松, 裴海清, 李萌, 杨艳秋, 温志勋, 岳珠峰. 不同激光加工工艺的DD406单晶高温合金气膜孔高温氧化行为[J]. 航空材料学报, 2022, 42(2): 29-40. doi: 10.11868/j.issn.1005-5053.2022.000010
YANG Yizhe, YANG Zhao, ZHAO Yunsong, PEI Haiqing, LI Meng, YANG Yanqiu, WEN Zhixun, YUE Zhufeng. High temperature oxidation behavior of DD406 SX superalloy film cooling holes with different laser drilling processes[J]. Journal of Aeronautical Materials, 2022, 42(2): 29-40. doi: 10.11868/j.issn.1005-5053.2022.000010
Citation: YANG Yizhe, YANG Zhao, ZHAO Yunsong, PEI Haiqing, LI Meng, YANG Yanqiu, WEN Zhixun, YUE Zhufeng. High temperature oxidation behavior of DD406 SX superalloy film cooling holes with different laser drilling processes[J]. Journal of Aeronautical Materials, 2022, 42(2): 29-40. doi: 10.11868/j.issn.1005-5053.2022.000010

不同激光加工工艺的DD406单晶高温合金气膜孔高温氧化行为

doi: 10.11868/j.issn.1005-5053.2022.000010
基金项目: 航空发动机及燃气轮机重大专项基础研究项目(2017-IV-0003-0040, 2017-V-0003-0052);国家自然科学基金 (51875461, 51875462)
详细信息
    通讯作者:

    温志勋(1982—),博士,教授,主要从事航发单晶叶片强度寿命设计,E-mail:zxwen@nwpu.edu.cn

  • 中图分类号: TG146.1+5

High temperature oxidation behavior of DD406 SX superalloy film cooling holes with different laser drilling processes

  • 摘要: 长寿命民机及地面燃气轮机涡轮叶片在工作过程中长期受到高温氧化的影响,使其在复杂工况下表面强度大幅度降低,服役寿命明显缩短,因此高温抗氧化性能是涡轮叶片应用中必须考虑的重要性能指标。本课题研究毫秒和皮秒激光加工工艺下DD406镍基单晶高温合金气膜孔结构在980 ℃和1100 ℃下的高温氧化行为,得到相应定量氧化动力学以及氧化物微观组织结构演化规律,揭示不同制孔工艺下气膜孔结构的氧化机理差异,为服役工况下叶片强度寿命模型的建立提供基础。结果表明:毫秒工艺下的气膜孔结构氧化速率显著高于皮秒工艺,不同工艺的氧化动力学曲线均遵循抛物线或直线规律;毫秒工艺下,氧化初期外层快速生成(Ni, Co)O,此阶段反应速率主要由NiO的生长过程控制,之后形成典型(Ni, Co)O-尖晶石相层-α-Al2O3典型三层结构;内α-Al2O3层下方及γ'相消失层存在较多孔洞,导致氧化层易剥落;皮秒工艺下,氧化初期快速生成不连续α-Al2O3,随后相互连接,形成连续致密α-Al2O3层。

     

  • 图  1  镍基单晶合金气膜孔构件 (a)基体微观结构;(b)试样实物尺寸图

    Figure  1.  Tested specimen of Ni-based SX superalloy (a)substrate microstructure;(b)geometry size

    图  2  镍基单晶合金气膜孔结构初始形貌及元素组成 (a)毫秒制孔工艺;(b)皮秒制孔工艺;(c)不同位置元素组成

    Figure  2.  Original microstructure and elemental composition of film cooling holes (a) specimen drilled by millisecond laser;(b)specimen drilled by picosecond laser;(c) element composition at different positions

    图  3  镍基单晶气膜孔孔周氧化物XRD检测结果 (a)1100 ℃;(b)980 ℃[a-(Ni, Co)O,b-Al2O3,c-NiTa2O6/TaO2,d-CoCo2O4/Co3O4,e-NiAl2O4,f-NiCr2O4,g-CoWO4,h- γ相,i-再铸层]

    Figure  3.  XRD plots of the peaks observed for  (a)1100 ℃ ;(b)980 ℃ [a-(Ni, Co)O,b-Al2O3,c-NiTa2O6/TaO2,d-CoCo2O4/Co3O4,e-NiAl2O4,f-NiCr2O4,g-CoWO4,h- γ phase,i- recast layer]

    图  4  980 °C下镍基单晶气膜孔氧化5 min后微观形貌 (a)毫秒制孔工艺;(b)皮秒制孔工艺

    Figure  4.  Microstructure around the hole after oxidation at 980 °C for 5 min:the specimen drilled by (a)millisecond laser; (b) picosecond laser

    图  5  980 ℃下镍基单晶气膜孔孔周氧化层微观形貌 (a)毫秒工艺正常区域;(b)毫秒工艺特定区域;(c)皮秒工艺正常区域;(d)皮秒工艺特定区域;(1)氧化10 h;(2)氧化100 h;(3)氧化400 h

    Figure  5.  Microstructure around the hole after oxidation at 980 °C (a)millisecond processing normal area;(b)millisecond processing specific area;(c)picosecond processing normal area;(d)picosecond processing specific area;(1)oxidation for 10 h;(2)oxidation for 100 h;(3)oxidation for 400 h

    图  6  1100 ℃下镍基单晶气膜孔孔周氧化层微观形貌 (a)毫秒工艺正常区域;(b)毫秒工艺特定区域;(c)皮秒工艺正常区域;(d)皮秒工艺特定区域;(1)氧化10 h;(2)氧化100 h;(3)氧化400 h

    Figure  6.  Microstructure around the hole after oxidation at 1100 ℃ (a)millisecond processing normal area;(b)millisecond processing specific area;(c)picosecond processing normal area;(d)picosecond processing specific area;(1)oxidation for 10 h;(2)oxidation for 100 h;(3)oxidation for 400 h

    图  7  镍基单晶气膜孔1100 ℃氧化10 h皮秒制孔孔周氧化层EDS元素分析

    Figure  7.  EDS analyses of the oxide layer around the hole drilled by picosecond laser after oxidation at 1100 °C for 10 h

    图  8  980 ℃和1100 ℃下镍基单晶气膜孔氧化层及γ'相消失层厚度变化 (a)毫秒激光制孔工艺;(b)皮秒激光制孔工艺

    Figure  8.  Thickness changes of oxide layer and γ' free layer around the hole at 980 ℃ and 1100 ℃: the specimen drilled by (a)millisecond laser;(b)picosecond laser

    图  9  不同温度下毫秒和皮秒工艺下孔周的动力学曲线 (a)气膜孔孔周外氧化层氧化动力学规律;(b)孔周γ'相消失层氧化动力学规律; (1)980 ℃;(2)1100 ℃

    Figure  9.  Oxidation kinetics of hole circumference under millisecond and picosecond processes at different temperatures (a)oxidation kinetics of oxide layer around the hole ; (b)oxidation kinetics of γ' free layer around the hole;(1)980 ℃;(2)1100 ℃

    图  10  镍基单晶气膜孔孔周氧化机理 (a)毫秒制孔工艺;(b)皮秒制孔工艺

    Figure  10.  Oxidation mechanism around the hole:the specimen drilled by (a)millisecond laser;(b)picosecond laser

    表  1  镍基单晶合金名义化学成分(质量分数/%)

    Table  1.   Nominal composition of the tested Ni-based SX superalloy(mass fraction/%)

    CCrCoWMoAlTiTaReNbBSiHfNi
    0.0154.09.08.02.05.7≤0.107.02.21.0≤0.02≤0.201.0Bal
    下载: 导出CSV

    表  2  镍基单晶气膜孔不同制孔工艺下外氧化层的氧化动力学方程

    Table  2.   Oxidation kinetic equation of the oxide layer around the hole under different condition

    Laser processing modeTemperature /℃Oxidation kinetic equationIsothermal rate constant
    Stage ⅠStage ⅡKpK
    Millisecond laser980Δh2= 0.07098t+1.08880Δh= 0.04307t-4.7858300.070980.04307
    1100Δh2= 0.13054t+1.60785Δh= 0.14404t-23.585330.130540.14404
    Picosecond laser980Δh2= 0.08042t+1.768220.08042
    1100Δh2= 0.134t+2.17887000.13400
    下载: 导出CSV

    表  3  镍基单晶气膜孔不同制孔工艺γ'相消失层的氧化动力学方程

    Table  3.   Oxidation kinetic equation of the γ' free layer around the hole under different condition

    Laser processing modeTemperature /℃Oxidation kinetic equationIsothermal rate constant
    Stage ⅠStage ⅡKpK
    Millisecond laser980Δh2= 0.18826t+0.35141Δh= 0.01082t+3.535420.188260.01082
    1100Δh2= 0.19253t+1.37038Δh= 0.02006t+3.054000.192530.02006
    Picosecond laser980Δh2= 0.07002t+0.632350.07002
    1100Δh2= 0.1553t+1.153360Δh= 0.01018t+3.687920.155300.01018
    下载: 导出CSV
  • [1] 胡壮麒,刘丽荣,金涛,等. 镍基单晶高温合金的发展[J]. 航空发动机,2005,31(3):1-7. doi: 10.3969/j.issn.1672-3147.2005.03.001

    HU Z Q,LIU L R,JIN T,et al. Development of Ni-base single crystal superalloys[J]. Aeroengine,2005,31(3):1-7. doi: 10.3969/j.issn.1672-3147.2005.03.001
    [2] 金涛,周亦胄,王新广,等. 先进镍基单晶高温合金组织稳定性及力学行为的研究进展[J]. 金属学报,2015,51(10):1153-1162.

    JIN T,ZHOU Y Z,WANG X G,et al. Research progress on microstructure stability and mechanical behavior of advanced Ni-based single crystal superalloys[J]. Acta Metallurgica Sinica,2015,51(10):1153-1162.
    [3] 郭文,王鹏飞. 涡轮叶片冷却技术分析[J]. 航空动力,2020(6):55-58.

    GUO W,WANG P F. Analysis of cooling configurations for turbine blade[J]. Aerospace Power,2020(6):55-58.
    [4] 蒋其麟,曹凯强,陈龙,等. 涡轮叶片气膜孔的纳秒-飞秒双波段激光加工[J]. 航空制造技术,2021,64(18):53-61.

    JIANG Q L,CAO K Q,CHEN L,et al. Process of turbine blade film cooling holes by nanosecond and femtosecond laser pulses[J]. Aeronautical Manufacturing Technology,2021,64(18):53-61.
    [5] 纪亮,张晓兵,张伟,等. DD6镍基单晶合金的纳秒及皮秒激光烧蚀和制孔研究[J]. 应用激光,2014,34(6):551-556. doi: 10.3788/AL20143406.551

    JI L,ZHANG X B,ZHANG W,et al. Laser-Induced ablation and laser drilling of DD6 nickel-based single-crystal alloy by nanosecond and picosecond lasers[J]. Applied laser,2014,34(6):551-556. doi: 10.3788/AL20143406.551
    [6] 张健. 飞秒激光超微细加工及应用研究[D]. 天津: 南开大学, 2009.

    ZHANG J. Femtosecond laser ultra micro machining and its application[D]. Tianjin: Nankai University, 2009.
    [7] 杨海峰. 飞秒激光微纳加工技术与应用研究[D]. 镇江: 江苏大学, 2007.

    YANG H F. Research on femtosecond laser micro nano machining technology and application[D]. Zhenjiang: Jiangsu University, 2007.
    [8] HU Y B,CHENG C Q,CAO T S,et al. A study on the multiple stages of oxidation kinetics in a single crystal nickel-based superalloy[J]. Corrosion Science,2021,188:109512. doi: 10.1016/j.corsci.2021.109512
    [9] SHI Z X,LI J R,LIU S Z. Isothermal oxidation behavior of single crystal superalloy DD6[J]. Transactions of Nonferrous Metals Society of China,2012,22(3):534-538. doi: 10.1016/S1003-6326(11)61210-7
    [10] PEI H Q,WEN Z X,ZHANG Y M,et al. Oxidation behavior and mechanism of a Ni-based single crystal superalloy with single α-Al2O3 film at 1000 °C[J]. Applied Surface Science,2017,411:124-135. doi: 10.1016/j.apsusc.2017.03.116
    [11] ZHUANG X,TAN Y,YOU X,et al. High temperature oxidation behavior and mechanism of a new Ni-Co-based superalloy[J]. Vacuum,2021(3):110219.
    [12] NEIL B, MEIER G H, PETTIT F S , 等. 金属高温氧化导论[M]. 北京: 高等教育出版社, 2010.

    NEIL B, MEIER G H, PETTIT F S, et al. Introduction to the high-temperature oxidation of metals[M]. Beijing: Higher Education Press, 2010.
    [13] BENSCH M,PREUßNER J,HÜTTNER R,et al. Modelling and analysis of the oxidation influence on creep behaviour of thin-walled structures of the single-crystal nickel-base superalloy René N5 at 980 °C[J]. Acta Materialia,2010,58(5):1607-1617. doi: 10.1016/j.actamat.2009.11.004
    [14] MALLIKARJUNA H T,CALEY W F,RICHARDS L. The dependence of oxidation resistance on gamma prime intermetallic size for superalloy IN738LC[J]. Corrosion Science,2019,147:394-405. doi: 10.1016/j.corsci.2018.12.002
    [15] TAN Z H,WANG X G,SONG W,et al. Oxidation behavior of a novel nickel-based single crystal superalloy at elevated temperature[J]. Vacuum,2020,175:109284. doi: 10.1016/j.vacuum.2020.109284
    [16] PEI H,WEN Z,LI Z,et al. Influence of surface roughness on the oxidation behavior of a Ni-4.0Cr-5.7Al single crystal superalloy[J]. Applied Surface Science,2018,440:790-803. doi: 10.1016/j.apsusc.2018.01.226
    [17] 田素贵,张禄廷,杨洪才,等. 镍基单晶合金高温氧化的动力学特征[J]. 材料研究学报,2002,16(2):183-187. doi: 10.3321/j.issn:1005-3093.2002.02.014

    TIAN S G,ZHANG L T,YANG H C,et al. Kinetic features of high temperature oxidation of a single crystal Ni-base superalloy[J]. Chinese Journal of Materials Research,2002,16(2):183-187. doi: 10.3321/j.issn:1005-3093.2002.02.014
    [18] 卢旭东,田素贵,孙振东. 高Cr镍基单晶合金1050 ℃的高温氧化性能[J]. 铸造,2011,60(2):175-179.

    LU X D,TIAN S G,SUN Z D. Oxidation behaviour of a high Cr single-crystal Ni-base superalloy at 1050 ℃[J]. China Foundry,2011,60(2):175-179.
    [19] PÉREZ-GONZÁLEZ F A,RAMÍREZ-RAMÍREZ J H,TEROCK M,et al. High-temperature oxidation of a nickel base superalloy at different oxygen partial pressures[J]. Corrosion Engineering Science and Technology,2016,51(7):1-9.
    [20] ATHREYA C N,DEEPAK K,DONG-IK K,et al. Role of grain boundary engineered microstructure on high temperature steam oxidation behaviour of Ni based superalloy alloy 617[J]. Journal of Alloys and Compounds,2019,778:224-233. doi: 10.1016/j.jallcom.2018.11.137
    [21] 郭建亭. 高温合金材料学[M]. 北京: 科学出版社, 2010.

    GUO J T. Materials science of superalloys[M]. Beijing: Science Press, 2010.
    [22] PEI J,LI Y,LI C,et al. Microstructure-dependent oxidation behavior of Ni-Al single-crystal alloys[J]. Journal of Materials Science and Technology,2020,52:162-171. doi: 10.1016/j.jmst.2020.04.006
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  13
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-12
  • 录用日期:  2022-02-08
  • 修回日期:  2022-03-16
  • 刊出日期:  2022-04-22

目录

    /

    返回文章
    返回