单晶高温合金定向凝固过程中石英玻璃柱型芯的蠕变行为

姜卫国 韩东宇 董琳 李凯文 赵德彪 王瑞春 任玉艳 李强 李延昭

姜卫国, 韩东宇, 董琳, 李凯文, 赵德彪, 王瑞春, 任玉艳, 李强, 李延昭. 单晶高温合金定向凝固过程中石英玻璃柱型芯的蠕变行为[J]. 航空材料学报, 2022, 42(6): 57-64. doi: 10.11868/j.issn.1005-5053.2022.000057
引用本文: 姜卫国, 韩东宇, 董琳, 李凯文, 赵德彪, 王瑞春, 任玉艳, 李强, 李延昭. 单晶高温合金定向凝固过程中石英玻璃柱型芯的蠕变行为[J]. 航空材料学报, 2022, 42(6): 57-64. doi: 10.11868/j.issn.1005-5053.2022.000057
JIANG Weiguo, HAN Dongyu, DONG Lin, LI Kaiwen, ZHAO Debiao, WANG Ruichun, REN Yuyan, LI Qiang, LI Yanzhao. Creep behavior of silica bar core during directional solidification process of single crystal superalloy[J]. Journal of Aeronautical Materials, 2022, 42(6): 57-64. doi: 10.11868/j.issn.1005-5053.2022.000057
Citation: JIANG Weiguo, HAN Dongyu, DONG Lin, LI Kaiwen, ZHAO Debiao, WANG Ruichun, REN Yuyan, LI Qiang, LI Yanzhao. Creep behavior of silica bar core during directional solidification process of single crystal superalloy[J]. Journal of Aeronautical Materials, 2022, 42(6): 57-64. doi: 10.11868/j.issn.1005-5053.2022.000057

单晶高温合金定向凝固过程中石英玻璃柱型芯的蠕变行为

doi: 10.11868/j.issn.1005-5053.2022.000057
基金项目: 国家自然科学基金项目(51674235)
详细信息
    通讯作者:

    姜卫国(1968—),男,博士,教授,研究方向为单晶高温合金叶片制备工艺与凝固缺陷控制,联系地址:山东省寿光市金光街1299号(262700),E-mail: jwg@wfust.edu.cn

  • 中图分类号: TA27

Creep behavior of silica bar core during directional solidification process of single crystal superalloy

  • 摘要: 利用悬挂法研究不同直径石英玻璃柱型芯在单晶高温合金定向凝固过程中的蠕变变形特征。采用扫描电镜 (SEM) 观察蠕变型芯表面及径向组织,利用能谱(EDS)分析蠕变型芯表面产物成分,使用XRD方法确定其表面反应产物。结果表明:随定向凝固时间的延长,玻璃柱型芯蠕变变形量增加;随型芯直径增大,蠕变变形量降低;蠕变时间60 min、直径0.5 mm的石英柱变形最严重,平均变形量为30 mm、直径2.0 mm的石英玻璃柱最轻,平均变形量只有24 mm;高温与高真空环境下,定向炉内的C颗粒粉末及合金中挥发的Al会沉积到石英玻璃柱型芯表面,玻璃柱型芯表面与C及Al发生界面反应并形成表层疏松组织层,反应产物所占型芯体积分数导致了不同直径石英玻璃柱型芯的蠕变量不同,随反应产物体积分数的增加,玻璃柱型芯蠕变变形量线性增大。

     

  • 图  1  蠕变时间60 min不同直径石英玻璃柱形貌

    Figure  1.  Features of different diameter silica bars crept for 60 min

    图  2  不同直径石英柱蠕变变形量与蠕变时间

    Figure  2.  Creep deformation amounts of different diameter silica bars versus creep time

    图  3  蠕变60 min不同直径石英玻璃柱横截面组织  (a) ϕ 0.5 mm;(b) ϕ 1.2 mm; (c) ϕ 2 mm;(1)低倍;(2)高倍

    Figure  3.  Transversal section microstructures of different diameter silica bars crept for 60 min  (a) ϕ 0.5 mm;(b) ϕ 1.2 mm; (c) ϕ 2 mm;(1)low magnifaction;(2)high magnifaction

    图  4  蠕变60 min不同直径石英玻璃柱表面组织  (a) ϕ 0.5 mm;(b) ϕ 1.2 mm; (c) ϕ 2 mm;(1)低倍;(2)高倍

    Figure  4.  Surface microstructures of different diameter silica bars crept for 60 min  (a) ϕ 0.5 mm;(b) ϕ 1.2 mm; (c) ϕ 2 mm;(1)low magnifaction;(2)high magnifaction

    图  5  蠕变60 min不同直径石英柱变形量与表面反应层体积分数

    Figure  5.  Deformation of different diameter silica bar crept for 60 min versus volume fraction of surface reaction layer

    图  6  0.5 mm石英柱不同蠕变时间表面组织 (a)20 min;(b)90 min;(1)低倍;(2)高倍

    Figure  6.  Surface microstructures of 0.5 mm diameter silica bar crept for different time  (a)20 min;(b)90 min;(1)low magnifaction;(2)high magnifaction

    图  7  直径2.0 mm石英玻璃柱不同状态下的表面能谱 (a)原始态SEM;(b)蠕变态SEM;(1)Si元素;(2)O元素;(3)Al元素;(4)C元素

    Figure  7.  EDS element maps of surface of 2.0 mm diameter silica bar  (a)original state SEM;(b)crept state EM;(1)Si;(2)O;(3)Al;(4)C

    图  8  不同状态下石英玻璃柱表面XRD谱  (a) ϕ2.0 mm,原始态;(b) ϕ2.0 mm,蠕变后; (c)ϕ 0.5 mm,蠕变后

    Figure  8.  XRD patterns of surface of silica bar at different states   (a) ϕ2.0 mm, original state;(b) ϕ 2.0 mm, crept;(c) ϕ0.5 mm,crept

  • [1] 李金国, 孟祥斌,刘纪德, 等. 单晶高温合金涡轮叶片的常见凝固缺陷及控制方法[J]. 特种铸造及有色合金,2021,41(11):1321-1327. doi: 10.15980/j.tzzz.2021.11.001

    LI J G,MENG X B,LIU J D,et al. Common solidification defects and inhibition methods in single crystal superalloy turbine baldes[J]. Special Casting & Nonferrous Alloys,2021,41(11):1321-1327. doi: 10.15980/j.tzzz.2021.11.001
    [2] 任 静,李雪英,郭欣欣,等. 燃气涡轮高效冷却技术及设计方法发展趋势[J]. 清华大学学报 (自然科学版),2022,62(4):794-801.

    REN J,LI X Y,GUO X X,et al. Development trends in high-efficiency gas turbine cooling methods[J]. Tsinghua University (Sci & Technol),2022,62(4):794-801.
    [3] 肖祖德, 玄伟东, 段方苗, 等. 石英纤维对氧化硅陶瓷型芯性能的影响[J]. 铸造, 2021, 70(9): 1072-1079. )

    (XIAO Z D , XUAN W D , DUAN F, et al. Effect of silica fibers on properties of silica ceramic cores[J]. Foundry, 2021, 70(9): 1072-1079.
    [4] KAZEM I A,FAGHIHI-SANI M A,NAYYERI M J,et al. Effect of zircon content on chemical and mechanical behavior of silica-based ceramic cores[J]. Ceramics International,2014,40(1):1093-1098. doi: 10.1016/j.ceramint.2013.06.108
    [5] 张强. Na2O对定向空心叶片陶瓷型芯质量的影响[J]. 铸造技术,2004,25(9):679-680. doi: 10.3969/j.issn.1000-8365.2004.09.006

    ZHANG Q. Effect of Na2O on this ceramic core quality of the directional and hollow blade[J]. Foundry Technology,2004,25(9):679-680. doi: 10.3969/j.issn.1000-8365.2004.09.006
    [6] 吴笑非,李 鑫,许西庆,等. 不同粒度莫来石粉改性硅基陶瓷型芯的制备及性能[J]. 航空材料学报,2021,41(4):128-133. doi: 10.11868/j.issn.1005-5053.2021.000074

    WU X F,LI X,XU X Q,et al. Fabrication and properties of silica-based ceramic cores modified by mullite powders with different particle sizes[J]. Journal of Aeronautical Materials,2021,41(4):128-133. doi: 10.11868/j.issn.1005-5053.2021.000074
    [7] BRENEMAN R C,HALLORAN J W,SGLAVO. Effect of cristobalite on the strength of sintered fused silica above and below the cristobalite transformation[J]. Journal of the American Ceramic Society,2015,98(5):1611-1617. doi: 10.1111/jace.13505
    [8] LIANG J J,LIN Q H,ZHANG X,et al. Effects of alumina on cristobalite crystallization and properties of silica-based ceramic cores[J]. Journal of Materials Science & Technology,2017,33(2):204-209.
    [9] NIU S,XU X,L X,et al. Microstructure evolution and properties of silica-based ceramic cores reinforced by mullite fibers[J]. Journal of Alloys and Compounds,2020,829:1-6.
    [10] LI Q, LIANG J,ZHANG Y,et al. Fused silica ceramic core based on network-structured zircon design via 3D printing[J]. Scripta Materialia,2022,208:1-7.
    [11] CHEN X, LIU C, ZHENG W, et al. High strength silica-based ceramics material for investment casting applications: effects of adding nanosized alumina coatings[J]. Ceramics International,2020,46(1):196-203. doi: 10.1016/j.ceramint.2019.08.248
    [12] 占红星, 芦刚,严青松, 等. 预加方石英含量对SiO2基陶瓷型芯高温蠕变性能的影响[J]. 复合材料学报,2021,38(5):1558-1593.

    ZHANG H X,LU G,YAN Q S, et al. Effect of pre-added cristobalite content on high temperature creep properties of silicon-based ceramic core[J]. Acta Materiae Compositae Sinica,2021,38(5):1558-1593.
    [13] WERESZCZAK A A,BREDER K,FERBER M K,et al. Dimensional changes and creep of silica core ceramics used in investment casting of superalloys[J]. Journal of Materials Science,2002,37:4235-4245. doi: 10.1023/A:1020060508311
    [14] LI K,JIANG W,WANG S,et al. Effect of specimen thickness on the creep deformation of a silica-based ceramic core material[J]. Journal of Alloys and Compounds,2018,763:781-790. doi: 10.1016/j.jallcom.2018.05.253
    [15] BAKUNOV V S,BELYAKOV A V. Creep and structure of ceramics[J]. Inorganic Materials,2000,36(12):1297-1301. doi: 10.1023/A:1026658404494
    [16] 李乔磊,李金国,梁静静, 等. 光固化3D打印制备空心叶片陶瓷型芯研究进展[J]. 特种铸造及有色合金,2021,41(11):1339-1344. doi: 10.15980/j.tzzz.2021.11.004

    LI Q L, LI J G, LIANG J J, et al. Research progress in ceramic core of hollow blades by photocurable 3D printing[J]. Special Casting & Nonferrous Alloys,2021,41(11):1339-1344. doi: 10.15980/j.tzzz.2021.11.004
    [17] OZKAN B,SAMENI F,BIANCHI F,et al. 3D printing ceramic cores for investment casting of turbine blades, using LCD screen printers: the mixture design and characterisation[J]. Journal of the European Ceramic Society,2022,42(2):658-671. doi: 10.1016/j.jeurceramsoc.2021.10.043
    [18] BIERNACKI J J, WOTZAK G P. Stoichiometry of the C + SiO2 reaction[J /OL]. Journal American Ceramic Society, 1989, 12(1): 122-128.
    [19] CHEN X Y, JIN Z, BAI X F, et al. Efect of C on the interfacial reaciton and wettability between a Ni-based superalloy and ceramic mould[J]. Acta Metallurgica Sinica,2015,51(7):853-858.
    [20] 何书平, 胡先志, 郑金淇. 石英玻璃管的高温软化性能研究[J]. 光通信研究,1993,68(4):39-43. doi: 10.13756/j.gtxyj.1993.04.010

    HE S P,HU X Z,ZHEN J Q. Study on the high temperatrue softening property of quartz glass tube[J]. Study on Optical Communications,1993,68(4):39-43. doi: 10.13756/j.gtxyj.1993.04.010
    [21] CHOKSHI A H. Diffusion creep in metals and ceramics: extension to nanocrystals[J /OL]. Materials Science and Engineering: A , 2008, 483/484: 485-491.
    [22] LANGDON T G. Dependence of creep rate on porosity[J]. Journal of The American Ceramic Society,1972,55(12):630-631. doi: 10.1111/j.1151-2916.1972.tb13458.x
    [23] 罗启, 刘大春, 曲涛, 等. 真空碳热还原过程中二氧化硅的挥发行为[J]. 中南大学学报(自然科学版),2012,43(8):2900-2908.

    LUO Q,LIU D C,QU T, et al. Volatile behavior of silicon by carbothermic reduction in vacuum[J]. Journal of Central South University (Science and Technology),2012,43(8):2900-2908.
    [24] UEDA M,ABE Y,OHTSUKA T. Reduction of SiO2 to Si by aluminum metal fog in NaCl-KCl-AlCl3 molten salt[J]. Materials Letters,2006,60(5):635-638. doi: 10.1016/j.matlet.2005.09.049
    [25] NIU S, ZHAO L, YOU X, et al. Evaporation for element Al in K417 Ni-based superalloy during electron beam remelting[J]. 2021, 187: 1-7.
    [26] JIA Q L,ZHANG H J,LI S P, et al. Effect of particle size on oxidation of silicon carbide powders[J]. Ceramics International,2007,33(2):309-313. doi: 10.1016/j.ceramint.2005.09.014
  • 加载中
图(8)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  23
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-02
  • 修回日期:  2022-11-10
  • 刊出日期:  2022-12-02

目录

    /

    返回文章
    返回