增材制造工艺及热处理对Ti-6Al-4V合金组织和性能的影响

董万鹏 高华兵 果春焕 董涛 杨振林 李海新 姜风春

董万鹏, 高华兵, 果春焕, 董涛, 杨振林, 李海新, 姜风春. 增材制造工艺及热处理对Ti-6Al-4V合金组织和性能的影响[J]. 航空材料学报, 2022, 42(6): 22-32. doi: 10.11868/j.issn.1005-5053.2022.000064
引用本文: 董万鹏, 高华兵, 果春焕, 董涛, 杨振林, 李海新, 姜风春. 增材制造工艺及热处理对Ti-6Al-4V合金组织和性能的影响[J]. 航空材料学报, 2022, 42(6): 22-32. doi: 10.11868/j.issn.1005-5053.2022.000064
DONG Wanpeng, GAO Huabing, GUO Chunhuan, DONG Tao, YANG Zhenlin, LI Haixin, JIANG Fengchun. Effect of additive manufacturing process and heat treatment on microstructure and properties of Ti-6Al-4V alloy[J]. Journal of Aeronautical Materials, 2022, 42(6): 22-32. doi: 10.11868/j.issn.1005-5053.2022.000064
Citation: DONG Wanpeng, GAO Huabing, GUO Chunhuan, DONG Tao, YANG Zhenlin, LI Haixin, JIANG Fengchun. Effect of additive manufacturing process and heat treatment on microstructure and properties of Ti-6Al-4V alloy[J]. Journal of Aeronautical Materials, 2022, 42(6): 22-32. doi: 10.11868/j.issn.1005-5053.2022.000064

增材制造工艺及热处理对Ti-6Al-4V合金组织和性能的影响

doi: 10.11868/j.issn.1005-5053.2022.000064
基金项目: 国家重点研发计划项目(2021YFC2801904);黑龙江省自然科学基金(ZD2019E006);中央高校基本业务费(3072021CFT1012);国家重点研发计划(2017YFE0123500)
详细信息
    通讯作者:

    姜风春(1963—),男,博士,教授,研究方向为金属基复合材料设计、制造,增材制造技术与装备,联系地址:山东省烟台市福山区八角街道青岛大街1号,哈尔滨工程大学烟台研究生院(264000),E-mail: fengchunjiang@hrbeu.edu.cn

  • 中图分类号: TG166.5

Effect of additive manufacturing process and heat treatment on microstructure and properties of Ti-6Al-4V alloy

  • 摘要: Ti-6Al-4V(TC4)钛合金是一种使用较为广泛的α+β型两相钛合金,然而,由于增材制造钛合金存在微观缺陷,导致其机械性能低于锻造水平,通常需要进行后处理。本文综述增材制造过程中常见的工艺参数如能量输入功率、扫描策略等以及其他工艺参数如保护气种类、基板厚度、粉末粒度等因素对钛合金微观结构和综合性能的影响,并综合分析增材制造常见的后热处理方式对微观结构与力学性能影响,归纳了新型后热处理方式,如真空热处理、循环热处理等以及多种后处理与热处理综合使用的效果。对增材制造工艺参数的合理选择以及后热处理方式的应用是获得性能优良的钛合金构件的基础,将多种热处理方式综合使用,或将其他后处理方式与热处理综合使用是进一步提升增材制造钛合金构件性能的有效途径,建立一个增材制造工艺参数和后处理工艺统一选择标准则是增材制造领域未来发展的关键。

     

  • 图  1  增材制造成形构件孔隙率随激光功率和扫描速度变化曲线[13]

    Figure  1.  Variation curve of porosity of additive manufactured component with laser power and scanning speed[13]

    图  2  在不同激光功率下增材制造TC4合金样品的SEM图像[20]  (a) 180 W;(b) 210W;(c) 240W

    Figure  2.  SEM images of additive manufactured TC4 samples with different laser power conditions[20]  (a) 180 W;(b) 210W;(c) 240W

    图  3  增材制造TC4合金低温真空热处理后的晶界分布[57]  (a) 未热处理样品; (b) 低温真空热处理后的样品

    Figure  3.  Grain boundary distribution of additive manufactured TC4 after low temperature vacuum heat treatment[57]  (a) untreated sample; (b) sample after treatment

    表  1  不同热处理方式对增材制造TC4性能的影响

    Table  1.   Influence of different heat treatment methods on properties of additive manufactured TC4

    Heat treatment methodPerformance impactAdvantage/disadvantage
    AnnealingAugmented strain hardening, strength decreases, elongation increasesStable organization and performance/ tensile strength and plasticity decrease
    NormalizationImprove toughness of material, increase the creep strength and fracture toughnessMaterial grain refinement,plasticity/difficult to control temperature
    Hot isostatic pressingEliminate anisotropy, increase hardness and density of materialReduce internal defects,increase density/reduce plasticity
    Solution and agingIncrease the elongation, compressive strength and yield strengthImprove comprehensive performance/needs to be combined with HIP
    下载: 导出CSV
  • [1] 卢秉恒,李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化,2013(4):1-4.

    LU B H,LI D C. Development of the additive manufacturing (3D printing) technology[J]. Machine Building & Automation,2013(4):1-4.
    [2] FRAZIER W E. Metal additive manufacturing: a review[J]. Journal of Materials Engineering and Performance,2014,23(6):1917-1928. doi: 10.1007/s11665-014-0958-z
    [3] 李涤尘,贺健康,田小永,等. 增材制造: 实现宏微结构一体化制造[J]. 机械工程学报,2013(6):129-135.

    LI D C,HE J K,TIAN X Y,et al. Additive manufacturing: integrated fabrication of macro/microstructures[J]. Journal of Mechanical Engineering,2013(6):129-135.
    [4] CHEN L,HE Y,YANG Y X,et al. The research status and development trend of additive manufacturing technology[J]. The International Journal of Advanced Manufacturing Technology,2017,89(9):3651-3660.
    [5] LIANG Z,ZHIRNOV I,ZHANG F,et al. Development of computational framework for titanium alloy phase transformation prediction in laser powder-bed fusion additive manufacturing[J]. Materialia,2020,14:100934. doi: 10.1016/j.mtla.2020.100934
    [6] TSHEPHE T S,AKINWAMIDE S O,OLEVSKY E,et al. Additive manufacturing of titanium-based alloys: a review of methods, properties, challenges, and prospects[J]. Heliyon,2022:e09041.
    [7] PINZ M,BENZING J T,PILCHAK A,et al. A microstructure-based porous crystal plasticity FE model for additively manufactured Ti-6Al-4V alloys[J]. International Journal of Plasticity,2022,153:103254. doi: 10.1016/j.ijplas.2022.103254
    [8] WANG X,ZHANG L J,NING J,et al. Effect of Cu-induced eutectoid transformation on microstructure and mechanical properties of Ti-6Al-4V alloy by laser wire deposition[J]. Materials Science and Engineering: A,2022,833:142316. doi: 10.1016/j.msea.2021.142316
    [9] KORKMAZ M E,GUPTA M K,WAQAR S,et al. A short review on thermal treatments of titanium & nickel based alloys processed by selective laser melting[J]. Journal of Materials Research and Technology,2022,16:1090-1101. doi: 10.1016/j.jmrt.2021.12.061
    [10] 章敏. 送粉式和送丝式的钛合金激光增材制造特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    ZHANG M. Research on laser additive manufacturing characeristics of titanium alloy with powder and wire[D]. Harbin: Harbin Institute of Technology, 2013.
    [11] 陈国兴. 基于双相特征的Ti-6Al-4V钛合金微观变形行为研究[D]. 秦皇岛: 燕山大学, 2018.

    CHEN G. Microscopic deformation behavior of Ti-6Al-4V titanium alloy based on the characteristic of two phase[D]. Qinhuangdao: Yanshan University, 2018.
    [12] HUANG L B,DONG H G,MA Y T,et al. Interfacial layer regulation and its effect on mechanical properties of Ti6Al4V titanium alloy and T2 copper dissimilar joints by cold metal transfer welding[J]. Journal of Manufacturing Processes,2022,75:1100-1110. doi: 10.1016/j.jmapro.2022.01.056
    [13] 孙小峰,黄洁,荣婷,等. Ti-6Al-4V合金激光选区熔化及热处理性能影响研究[J]. 金属加工(热加工),2021(8):1-6.

    SUN X F,HUANG J,RONG T,et al. Effect of laser selective melting and heat treatment on properties of Ti-6Al-4V alloy[J]. Metal Working,2021(8):1-6.
    [14] GONG H J,RAFI K,GU H F,et al. Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes[J]. Additive Manufacturing,2014,1:87-98.
    [15] THIJS L,VERHAEGHE F,CRAEGHS T,et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia,2010,58(9):3303-3312. doi: 10.1016/j.actamat.2010.02.004
    [16] SONG B,DONG S J,ZHANG B C,et al. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti-6Al-4V[J]. Materials & Design,2012,35:120-125.
    [17] VANDENBROUCKE B, KRUTH J P. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts[J]. Rapid Prototyping Journal, 2007.
    [18] WANG X Q,GONG X B,CHOU K. Scanning speed effect on mechanical properties of Ti-6Al-4V alloy processed by electron beam additive manufacturing[J]. Procedia Manufacturing,2015,1:287-295. doi: 10.1016/j.promfg.2015.09.026
    [19] 李吉帅,戚文军,李亚江,等. 选区激光熔化工艺参数对Ti-6Al-4V成形质量的影响[J]. 材料导报,2017(10):65-69.

    LI J S,QI W J,LI Y J,et al. Influence of process parameters of forming characteristics on Ti-6Al-4V fabricated by selective laser melting[J]. Materials Review,2017(10):65-69.
    [20] ZHAO R X,CHEN C Y,WANG W,et al. On the role of volumetric energy density in the microstructure and mechanical properties of laser powder bed fusion Ti-6Al-4V alloy[J]. Additive Manufacturing,2022,51:102605. doi: 10.1016/j.addma.2022.102605
    [21] FATOBA O S,AKINLABI E T,AKINLABI S A,et al. Influence of process parameters on the mechanical properties of laser deposited Ti-6Al-4V alloy:Taguchi and response surface model approach[J]. Materials Today: Proceedings,2018,5(9):19181-19190. doi: 10.1016/j.matpr.2018.06.273
    [22] SYED A K,ZHANG X,DAVIS A E,et al. Effect of deposition strategies on fatigue crack growth behaviour of wire+arc additive manufactured titanium alloy Ti-6Al-4V[J]. Materials Science & Engineering:A,2021,814:141194.
    [23] SYED A K,ZHANG X,CABALLERO A,et al. Influence of deposition strategies on tensile and fatigue properties in a wire+arc additive manufactured Ti-6Al-4V[J]. International Journal of Fatigue,2021,149:106268. doi: 10.1016/j.ijfatigue.2021.106268
    [24] ZHANG P L,JIA Z Y,YAN H,et al. Effect of deposition rate on microstructure and mechanical properties of wire arc additive manufacturing of Ti-6Al-4V components[J]. Journal of Central South University,2021,28(4):1100-1110. doi: 10.1007/s11771-021-4683-0
    [25] 李永涛. 钛合金激光增材制造缺陷研究[D]. 大连: 大连理工大学, 2017: 24.

    LI Y T. The study on defect formation in laser additive manufacturing titanium alloy[D]. Dalian: Dalian University of Technology, 2017: 24.
    [26] THIJS L,KEMPEN K,KRUTH J P,et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Materialia,2013,61(5):1809-1819. doi: 10.1016/j.actamat.2012.11.052
    [27] KEMPEN K,THIJS L,VAN HUMBEECK J,et al. Mechanical properties of AlSi10Mg produced by selective laser melting[J]. Physics Procedia,2012,39:439-446. doi: 10.1016/j.phpro.2012.10.059
    [28] 杨永强,宋长辉,王迪. 激光选区熔化技术及其在个性化医学中的应用[J]. 机械工程学报,2014(21):140-151.

    YANG Y Q,SONG C H,WANG D. Selective laser melting and its applications on personalized medical parts[J]. Journal of Mechanical Engineering,2014(21):140-151.
    [29] 王迪,杨永强,黄延禄,等. 选区激光熔化直接成型金属零件致密度的改善[J]. 华南理工大学学报(自然科学版),2010(6):107-111.

    WANG D,YANG Y Q,HUANG Y L,et al. Density improvement of metal parts directly fabricated via selective laser melting[J]. Journal of South China University of Technology(Natural Science Edition),2010(6):107-111.
    [30] STEPHENSON P L,HAGHDADI N,DEMOTT R,et al. Effect of scanning strategy on variant selection in additively manufactured Ti-6Al-4V[J]. Additive Manufacturing,2020,36:101581. doi: 10.1016/j.addma.2020.101581
    [31] STRANTZA M,GANERIWALA R K,CLAUSEN B,et al. Effect of the scanning strategy on the formation of residual stresses in additively manufactured Ti-6Al-4V[J]. Additive Manufacturing,2021,45:102003. doi: 10.1016/j.addma.2021.102003
    [32] NOUROLLAHI A,RAZAVI R S,BAREKAT M,et al. Microstructural investigation of direct laser deposition of the Ti-6Al-4V alloy by different meltpool protection conditions[J]. Journal of Materials Research and Technology,2021,13:590-601. doi: 10.1016/j.jmrt.2021.04.087
    [33] AMANO H,ISHIMOTO T,SUGANUMA R,et al. Effect of a helium gas atmosphere on the mechanical properties of Ti-6Al-4V alloy built with laser powder bed fusion: a comparative study with argon gas[J]. Additive Manufacturing,2021,48:102444. doi: 10.1016/j.addma.2021.102444
    [34] EMMINGHAUS N,HOFF C,HERMSDORF J,et al. Residual oxygen content and powder recycling: Effects on surface roughness and porosity of additively manufactured Ti-6Al-4V[J]. Additive Manufacturing,2021,46:102093. doi: 10.1016/j.addma.2021.102093
    [35] KALASHNIKOV K N,CHUMAEVSKII A V,KALASHNIKOVA T A,et al. A substrate material and thickness influence on the 3D-printing of Ti-6Al-4V components via wire-feed electron beam additive manufacturing[J]. Journal of Materials Research and Technology,2022,16:840-852. doi: 10.1016/j.jmrt.2021.12.024
    [36] SOLTANI-TEHRANI A,YASIN M S,SHAO S,et al. Effects of powder particle size on fatigue performance of laser powder-bed fused Ti-6Al-4V[J]. Procedia Structural Integrity,2022,38:84-93. doi: 10.1016/j.prostr.2022.03.010
    [37] GUO P,ZHAO Y Q,ZENG W D,et al. The effect of microstructure on the mechanical properties of TC4-DT titanium alloys[J]. Materials Science & Engineering: A,2013,563:106-111.
    [38] BERMINGHAM M J,NICASTRO L,KENT D,et al. Optimising the mechanical properties of Ti-6Al-4V components produced by wire +arc additive manufacturing with post-process heat treatments[J]. Journal of Alloys and Compounds,2018,753:247-255. doi: 10.1016/j.jallcom.2018.04.158
    [39] BRANDL E,SCHOBERTH A,LEYENS C. Morphology, microstructure, and hardness of titanium (Ti-6Al-4V) blocks deposited by wirefeed additive layer manufacturing(ALM)[J]. Materials Science & Engineering: A,2012,532:295-307.
    [40] VRANCKEN B,THIJS L,KRUTH J P,et al. Heat treatment of Ti-6A1-4V produced by selective laser melting: microsructure and mechanical propertie[J]. Journal of Alloys & Compounds,2012,541:177-185.
    [41] GWAK M,KIM S,LEE D J,et al. Post-annealing effect on the tensile deformation mechanism of a Ti-6Al-4V alloy manufactured via directed energy deposition[J]. Materials Science and Engineering: A,2022:142729.
    [42] CHEN B Q,WU Z K,YAN T Q,et al. Experimental studies on mechanical properties of laser powder bed fused Ti-6Al-4V alloy under post-heat treatment[J]. Engineering Fracture Mechanics,2022:108264.
    [43] WANG P J,CHEN Z J,HU C,et al. Effects of Annealing on the interface microstructures and mechanical properties of hot roll bonded Ti6Al4V/AA6061 clad sheets[J]. Journal of Materials Research and Technology,2020,9(5):11813-11825. doi: 10.1016/j.jmrt.2020.08.070
    [44] 徐国建,柳晋,陈冬卅,等. 正火温度对电弧增材制造Ti-6Al-4V组织与性能的影响[J]. 焊接学报,2020(1):39-43.

    XU G J,LIU J,CHEN D S,et al. Effect of normalizing temperature on microstructure and properties of Ti-6Al-4V fabricated by arc additive[J]. Transactions of the China Welding Institution,2020(1):39-43.
    [45] 姚定烨,兰彦宇,马宇立,等. 热处理工艺对Ti-6Al-4V钛合金点阵结构显微组织和性能的影响[J]. 热处理,2021(3):21-26.

    YAO D Y,LAN Y Y,MA Y L,et al. Effect of heat treatment process on microstructure and performance Ti-6Al-4V titanium alloy lattice structure[J]. Heat Treatment,2021(3):21-26.
    [46] MOLAEI R,FATEMI A,PHAN N. Significance of hot isostatic pressing (HIP) on multiaxial deformation and fatigue behaviors of additive manufactured Ti-6Al-4V including build orientation and surface roughness effects[J]. International Journal of Fatigue,2018,117:352-370. doi: 10.1016/j.ijfatigue.2018.07.035
    [47] 薛松海,李重阳,李雪辰,等. 热处理工艺对铸造/激光增材制造复合制备Ti-6Al-4V合金组织和性能的影响[J]. 铸造,2021(7):804.

    XUE S H,LI C Y,LI X C,et al. Effect of heat treatment process on microstructure and properties of Ti-6Al-4V alloy fabricated by casting/laser additive manufacturing[J]. Foundry,2021(7):804.
    [48] LEE J S,HA H J,SEOL J B,et al. Reverse effect of hot isostatic pressing on high-speed selective laser melted Ti-6Al-4V alloy[J]. Materials Science and Engineering: A,2021,807:140880. doi: 10.1016/j.msea.2021.140880
    [49] LEE J R,LEE M S,YEON S M,et al. Influence of heat treatment and loading direction on compressive deformation behaviour of Ti-6Al-4V ELI fabricated by powder bed fusion additive manufacturing[J]. Materials Science and Engineering: A,2022,831:142258. doi: 10.1016/j.msea.2021.142258
    [50] GANGIREDDY S,FAIERSON E J,MISHRA R S. Influences of post-processing, location, orientation, and induced porosity on the dynamic compression behavior of Ti-6Al-4V alloy built through additive manufacturing[J]. Journal of Dynamic Behavior of Materials,2018,4(4):441-451. doi: 10.1007/s40870-018-0157-3
    [51] LIU Y,XU H Z,ZHU L,et al. Investigation into the microstructure and dynamic compressive properties of selective laser melted Ti-6Al-4V alloy with different heating treatments[J]. Materials Science and Engineering: A,2021,805:140561. doi: 10.1016/j.msea.2020.140561
    [52] REN Y M,LIN X,FU X,et al. Microstrucre and defomation behavior of Ti-6Al-4V alloy by high-power laser solid forming[J]. Acta Materialia,2017,132:82-95. doi: 10.1016/j.actamat.2017.04.026
    [53] ZHAO Z,CHEN J,TAN H,et al. Achieving superior ductility for laser solid formed extra low interstitial Ti-6A1-4V titanium alloy through equiaxial alpha microstructure[J]. Scripta Materialia,2018,146:187-191. doi: 10.1016/j.scriptamat.2017.11.021
    [54] LI P X,ZHANG Y,WANG W Y,et al. Coupling effects of high magnetic field and annealing on the microstructure evolution and mechanical properties of additive manufactured Ti-6Al-4V[J]. Materials Science & Engineering: A,2021,824:141815.
    [55] ZOU Z Y,SIMONELLI M,KATRIB J,et al. Microstructure and tensile properties of additive manufactured Ti-6Al-4V with refined prior-β grain structure obtained by rapid heat treatment[J]. Materials Science & Engineering: A,2021,814:141271.
    [56] GOU J,SHEN J Q,HU S S,et al. Microstructure and mechanical properties of as-built and heat-treated Ti-6Al-4V alloy prepared by cold metal transfer additive manufacturing[J]. Journal of Manufacturing Processes,2019,42:41-50. doi: 10.1016/j.jmapro.2019.04.012
    [57] WANG Q P,KONG J,LIU X K,et al. The effect of a novel low-temperature vacuum heat treatment on the microstructure and properties of Ti-6Al-4V alloys manufactured by selective laser melting[J]. Vacuum,2021,193:110554. doi: 10.1016/j.vacuum.2021.110554
    [58] SUI S, CHEW Y X, HAO Z W, et al. Effect of cyclic heat treatment on microstructure and mechanical properties of laser aided additive manufacturing Ti-6Al-2Sn-4Zr-2Mo alloy[J]. Advanced Powder Materials, 2022, 1(1): 100002.
    [59] SOUZA P M,SIVASWAMY G,ANDREU A,et al. A novel cyclic thermal treatment for enhanced globularisation kinetics in Ti-6Al-4V alloy: experimental, constitutive and FE based analyses[J]. Journal of Alloys and Compounds,2022,898:162859. doi: 10.1016/j.jallcom.2021.162859
    [60] 高润奇, 彭徽, 郭洪波, 等. 电子束选区熔化制备TiAl合金叶片热冲击失效机理[J]. 航空材料学报, 2022, 42(5): 91-99.

    GAO R Q, PENG H, GUO H B, et al. Thermal shock failure mechanism of TiAl alloy blade prepared by SEBM[J]Journal of Aeronautical Materials, 2022, 42(5): 91-99.
    [61] 肖文龙,付雨,王俊帅,等. 高强度高弹性钛合金的研究进展[J]. 航空材料学报,2020,40(3):11-24.

    XIAO W L,FU Y,WANG J S,et al. Recent development in titanium alloys with high strength and high elasticity[J]. Journal of Aeronautical Materials,2020,40(3):11-24.
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  46
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-20
  • 修回日期:  2022-07-06
  • 刊出日期:  2022-12-02

目录

    /

    返回文章
    返回