钛合金辐照损伤缺陷表征与性能调控研究进展

叶勇强 韩远飞 赵敏 黄光法 吕维洁

叶勇强, 韩远飞, 赵敏, 黄光法, 吕维洁. 钛合金辐照损伤缺陷表征与性能调控研究进展[J]. 航空材料学报, 2022, 42(6): 9-21. doi: 10.11868/j.issn.1005-5053.2022.000074
引用本文: 叶勇强, 韩远飞, 赵敏, 黄光法, 吕维洁. 钛合金辐照损伤缺陷表征与性能调控研究进展[J]. 航空材料学报, 2022, 42(6): 9-21. doi: 10.11868/j.issn.1005-5053.2022.000074
YE Yongqiang, HAN Yuanfei, ZHAO Min, HUANG Guangfa, LYU Weijie. Research progress on the characterization of irradiation damage defects and performance control of titanium alloy[J]. Journal of Aeronautical Materials, 2022, 42(6): 9-21. doi: 10.11868/j.issn.1005-5053.2022.000074
Citation: YE Yongqiang, HAN Yuanfei, ZHAO Min, HUANG Guangfa, LYU Weijie. Research progress on the characterization of irradiation damage defects and performance control of titanium alloy[J]. Journal of Aeronautical Materials, 2022, 42(6): 9-21. doi: 10.11868/j.issn.1005-5053.2022.000074

钛合金辐照损伤缺陷表征与性能调控研究进展

doi: 10.11868/j.issn.1005-5053.2022.000074
基金项目: 国家自然科学基金资助项目(U2067220);上海市浦江人才资助(21PJD03);中核集团“青年英才”、“领创科研”项目
详细信息
    通讯作者:

    韩远飞(1983—),男,博士,研究员,主要从事的研究方向为钛合金及其复合材料设计与制备,联系地址:上海市东川路800号(200240),E-mail: hyuf1@sjtu.edu.cn

  • 中图分类号: TG146.2+3

Research progress on the characterization of irradiation damage defects and performance control of titanium alloy

  • 摘要: 在高能粒子撞击和级联效应作用下,金属材料内部会产生不同类型的辐照损伤缺陷。辐照损伤缺陷的聚集和演化会破坏内部结构稳定性,恶化金属材料综合力学性能。钛合金由于其轻质高强、耐高温和较低的辐照活性等优势,是很有发展前景的抗辐照材料。本文针对如何提高钛合金抗辐照损伤性能的问题,总结钛合金辐照损伤缺陷表征及其力学响应的研究进展,分析辐照损伤缺陷的形成演化规律以及辐照剂量、温度和元素种类等对缺陷迁移、聚集的影响机制,讨论辐照诱导钛合金微观组织演化,进而产生辐照硬化、辐照脆化和辐照蠕变等辐照损伤效应,归纳评价钛合金抗辐照损伤性能,以及现有研究中缺乏有效抑制辐照损伤产生的方法,作者认为成分调控以及界面微观组织结构设计是提高钛合金抗辐照性能的有效策略。

     

  • 图  1  辐照剂量对Kr 离子辐照Ti-44Al钛合金缺陷类型的影响[23] (a) 位错线;(b) 微小的点缺陷;(c)点缺陷和短的面缺陷;(d) 点缺陷和面缺陷尺寸和数量增加;(e) 点缺陷和面缺陷聚集长大;(f)、(g) 点缺陷尺寸增加但数量减少,面缺陷尺寸和数量均增加;(h)、(i) 大量的面缺陷

    Figure  1.  Effect of irradiation dose on defect types of Ti-44Al titanium alloys irradiated by Kr ions[23] (a) dislocation lines; (b) tiny point defects; (c) point defects and short plane defects; (d) increased number and size of point and plane defects; (e) growing point and plane defects ; (f) ,(g) point defects increased in size but decreased in number, and surface defects increased in size and number; (h) ,(i) a large number of surface defects

    图  2  不同辐照温度对He离子辐照纯钛中氦泡数量和尺寸的影响[36] (a) 340 ℃大量细小的球形氦泡;(b) 410 ℃氦泡数量减少但尺寸增大;(c) 500 ℃大量氦泡聚集长大形成多面体氦泡

    Figure  2.  Effect of irradiation temperature on number and size of helium bubbles in pure titanium irradiated by He ions[36] (a) tiny spherical helium bubbles at 340 ℃; (b) the number decreases and the size increases at 410 ℃;(c) spherical helium bubbles accumulate and grow to form polyhedral helium bubbles at 500 ℃

    图  3  3 dpa中子辐照剂量下Ti6Al4V中不同的辐照缺陷  (a)富V析出相[44];(b) 纳米析出相[37]; (c) 300 ℃下的V元素偏聚[24];(d) 430 ℃下的V元素偏聚[24]

    Figure  3.  Different irradiation defects in Ti6Al4V at 3dpa neutron irradiation dose  (a) V-rich precipitates [44] ; (b) nano-precipitates [37]; (c) V element segregation at 300 ℃[24]; (d) V element segregation at 430 ℃[24]

    图  4  在 1073 K 和 200 MPa 下TiAl 合金[60]  (a) 未辐照的蠕变曲线; (b) He离子辐照后的蠕变曲线;(c)层状相和微观结构特征

    Figure  4.  TiAl alloys at 1073 K and 200 MPa[60]  (a) unirradiated creep curves;(b) creep curves after He ion-irradiated; (c) layered phase composition and microstructural characteristics

    图  5  微观结构对钛合金辐照损伤的影响机理[57]  (a) 阻碍位错运动; (b) 对缺陷运动的影响

    Figure  5.  Effect mechanism of microstructure on radiation damage of titanium alloy[57]  (a) obstructing dislocation movement;(b) influence on defect movement

  • [1] PAWEL S J,MANSUR L K. Preliminary evaluation of cavitation-erosion resistance of Ti-alloys in mercury for the spallation neutron source[J]. Journal of Nuclear Materials,2010,398(1/2/3):180-188. doi: 10.1016/j.jnucmat.2009.10.030
    [2] DAVIS J W,ULRICKSON M A,CAUSEY R A. Use of titanium in fusion components[J]. Journal of Nuclear Materials,1994,212/213/214/215:813-817. doi: 10.1016/0022-3115(94)90168-6
    [3] JONES R H,CHARLOT L A. Microstructure of irradiated Ti-70a and Ti-6Al-4V[J]. Journal of Nuclear Materials,1980,91(2/3):329-335. doi: 10.1016/0022-3115(80)90233-0
    [4] PIPPIN G. Space environments and induced damage mechanisms in materials[J]. Progress in Organic Coatings,2003,47(3/4):424-431. doi: 10.1016/j.porgcoat.2003.07.003
    [5] KOZHEVNIKOV O A,NESTEROVA E V,RYBIN V V,et al. Influence of neutron irradiation on deformability and fracture micromechanisms of titanium α-alloys[J]. Journal of Nuclear Materials,1999,271:472-477.
    [6] RODCHENKOV B S,KOZLOV A V,KUZNETSOV Y G. Irradiation behavior of titanium alloys for ITER blanket modules flexible attachment[J]. Journal of Nuclear Materials,2002,307/308/309/310/311:421-425. doi: 10.1016/S0022-3115(02)01011-5
    [7] LAURIENTE M,VAMPOLA A L,KOGA R,et al. Analysis of spacecraft anomalies due to the radiation environment[J]. Journal of Spacecraft and Rockets,1999,36(6):902-906. doi: 10.2514/2.3509
    [8] 朱知寿,商国强,王新南,等. 航空用钛合金显微组织控制和力学性能关系[J]. 航空材料学报,2020,40(3):1-10. doi: 10.11868/j.issn.1005-5053.2020.000086

    ZHU Z S,SHANG G Q,WANG X N,et al. Microstructure controlling technology and mechanical properties relationship of titanium alloys for aviation applications [J]. Journal of Aeronautical Materials,2020,40(3):1-10. doi: 10.11868/j.issn.1005-5053.2020.000086
    [9] RODCHENKOV B S,EVSEEV M V,STREBKOV Y S,et al. Properties of unirradiated and irradiated Ti-6Al-4V alloy for ITER flexible connectors[J]. Journal of Nuclear Materials,2011,417(1/2/3):928-931. doi: 10.1016/j.jnucmat.2010.12.194
    [10] SANKARA NARAYANAN T S N,KIM J,PARK H W. Fabrication and synthesis of uniform TiO2 nanoporous and nanotubular structures on dual-phase Ti-6Al-4V alloy using electron-beam irradiation[J]. Materials Chemistry and Physics,2020,242:122549. doi: 10.1016/j.matchemphys.2019.122549
    [11] ZHAO B,ZHAO Y,HOU Z,et al. Design and optimization of the processing parameters of Ti-5Al-3V-3Zr-0.7Cr titanium alloy as a candidate material for pressure hull of fusion reactor[J]. Fusion Engineering and Design,2018,137:405-413. doi: 10.1016/j.fusengdes.2018.10.022
    [12] NINGSHEN S,KAMACHI MUDALI U,MUKHERJEE P,et al. Influence of oxygen ion irradiation on the corrosion aspects of Ti-5%Ta-2%Nb alloy and oxide coated titanium[J]. Corrosion Science,2008,50(8):2124-2134. doi: 10.1016/j.corsci.2008.03.019
    [13] 刘世锋,宋玺,薛彤,等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报,2020,40(3):77-94. doi: 10.11868/j.issn.1005-5053.2020.000061

    LIU S F,SONG X,XUE T,et al. Application and development of titanium alloy and titanium matrix composites in aerospace field[J]. Journal of Aeronautical Materials,2020,40(3):77-94. doi: 10.11868/j.issn.1005-5053.2020.000061
    [14] SIMOS N,KIRK H G,THIEBERGER P,et al. Irradiation damage studies of high power accelerator materials[J]. Journal of Nuclear Materials,2008,377(1):41-51. doi: 10.1016/j.jnucmat.2008.02.074
    [15] GRIFFITHS M, FAULKNER D, STYLES R C. Neutron damage in α-titanium[J]. 1983, 119: 189-207.
    [16] ZHU H,WEI T,CARR D,et al. Assessment of titanium aluminide alloys for high-temperature nuclear structural applications[J]. JOM,2012,64(12):1418-1424. doi: 10.1007/s11837-012-0471-5
    [17] LITTLE E A. Development of radiation resistant materials for advanced nuclear power plant[J]. Materials Science and Technology,2006,22(5):491-518. doi: 10.1179/174328406X90998
    [18] 朱忠,杨立华,司马灿. 美俄水下载人探测作业装备发展[J]. 中国造船,2019,60(2):217-226. doi: 10.3969/j.issn.1000-4882.2019.02.022

    ZHU Z,YANG L H,SIMA C. Development and enlightenment of underwater manned vehicles in the U. S. and Russia[J]. Shipbuilding of China,2019,60(2):217-226. doi: 10.3969/j.issn.1000-4882.2019.02.022
    [19] 阎昌琪,李洪喜,孙中宁. 深海潜器用小型核动力的研制与发展前景[J]. 核动力工程,2000,21(4):378-384. doi: 10.3969/j.issn.0258-0926.2000.04.019

    YAN C Q,LI H X,SUN Z N. Research and development of small nuclear power for deep-sea vessel[J]. Nuclear Power Engineering,2000,21(4):378-384. doi: 10.3969/j.issn.0258-0926.2000.04.019
    [20] CONNÉTABLE D,HUEZ J,ANDRIEU É,et al. First-principles study of diffusion and interactions of vacancies and hydrogen in hcp-titanium[J]. Journal of Physics:Condensed Matter,2011,23(40):405401. doi: 10.1088/0953-8984/23/40/405401
    [21] SINYAKOVA E A,PANIN A V,PEREVALOVA O B,et al. The effect of phase transformations on the recovery of pulsed electron beam irradiated Ti-6Al-4V titanium alloy during scratching[J]. Journal of Alloys and Compounds,2019,795:275-283. doi: 10.1016/j.jallcom.2019.04.320
    [22] SIEMEK K,HORODEK P,SKURATOV V A,et al. Positron annihilation studies of irradiation induced defects in nanostructured titanium[J]. Vacuum,2021,190:110282. doi: 10.1016/j.vacuum.2021.110282
    [23] ZHU H,QIN M,AUGHTERSON R,et al. The formation and accumulation of radiation-induced defects and the role of lamellar interfaces in radiation damage of titanium aluminum alloy irradiated with Kr-ions at room temperature[J]. Acta Materialia,2020,195:654-667. doi: 10.1016/j.actamat.2020.06.009
    [24] DORIOT S,JOUANNY E,MALAPLATE J,et al. Evolution of defects in Ti6-4 under Ti2+ ion irradiation: focus on radiation-induced precipitates[J]. Journal of Nuclear Materials,2018,511:264-276. doi: 10.1016/j.jnucmat.2018.09.027
    [25] NAKATA K,FUKAI K,HISHINUMA A,et al. Formation and annealing behavior of defect clusters in electron or He-ion irradiated Ti-rich Ti-Al alloys[J]. Journal of Nuclear Materials,1997,240(3):221-228. doi: 10.1016/S0022-3115(96)00675-7
    [26] LEGUEY T,SCHÄUBLIN R,MARMY P,et al. Microstructure of Ti5Al2.5Sn and Ti6Al4V deformed in tensile and fatigue tests[J]. Journal of Nuclear Materials,2002,305(1):52-59. doi: 10.1016/S0022-3115(02)00888-7
    [27] CAWTHORNE C,FULTON E J. Use of ethylene as a gas phase dosimeter for accelerator radiation[J]. Nature,1967,216(5115):576-577. doi: 10.1038/216576a0
    [28] 范海冬,李自琨,李德飞,等. 金属材料辐照缺陷演化的分子动力学研究进展[J]. 固体力学学报,2020,41(6):498-512. doi: 10.19636/j.cnki.cjsm42-1250/o3.2020.033

    FAN H D,LI Z K,LI D F,et al. Progress in molecular dynamics simulations of irradiation-induced defects in metallic materials[J]. Chinese Journal of Solid Mechanics,2020,41(6):498-512. doi: 10.19636/j.cnki.cjsm42-1250/o3.2020.033
    [29] 邓平,彭群家,韩恩厚,等. 国产核用不锈钢辐照损伤研究[J]. 金属学报,2017,53(12):1588-1602. doi: 10.11900/0412.1961.2017.00117

    DENG P,PENG Q J,HAN E H,et al. Study of irradiation damage in domestically fabricated nuclear grade stainless steel[J]. Acta Metallurgica Sinica,2017,53(12):1588-1602. doi: 10.11900/0412.1961.2017.00117
    [30] 盛钟琦,萧洪. 合金的辐照肿胀与价电子结构的关系[J]. 核动力工程,1998(6):23-27.

    SHENG Z Q,XIAO H. Relationship between irradiation swelling behavior of alloys and their valence electron structure[J]. Nuclear Power Engineering,1998(6):23-27.
    [31] KATO T,TAKAHASHI H,IZUMIYA M. Effects of systematic modification with oversized elements on void formation in 316L austenitic stainless steel under electron irradiation[J]. Materials Transactions, JIM,1991,32(10):921-930. doi: 10.2320/matertrans1989.32.921
    [32] SEKIO Y,YAMASHITA S,SAKAGUCHI N,et al. Effect of additional minor elements on accumulation behavior of point defects under electron irradiation in austenitic stainless steels[J]. Materials Transactions,2014,55(3):438-442. doi: 10.2320/matertrans.MD201309
    [33] WEI T,ZHU H,IONESCU M,et al. Radiation effects on microstructure and hardness of a titanium aluminide alloy irradiated by helium ions at room and elevated temperatures[J]. Journal of Nuclear Materials,2015,459:284-290. doi: 10.1016/j.jnucmat.2015.01.043
    [34] ZHU H,WEI T,BLACKFORD M,et al. Irradiation behavior of α2 and γ phases in He ion implanted titanium aluminide alloy[J]. Intermetallics,2014,50:28-33. doi: 10.1016/j.intermet.2014.02.005
    [35] CHEN S H,SCHUMACHER G,XU Z Y,et al. Changes in hardness and elasticity of a Ti6Al4V alloy under helium irradiation[J]. Journal of Nuclear Materials,2006,358(1):26-34. doi: 10.1016/j.jnucmat.2006.06.009
    [36] LEAR C R,GIGAX J G,EL ATWANI O,et al. Effects of helium cavity size and morphology on the strength of pure titanium[J]. Scripta Materialia,2022,212:114531. doi: 10.1016/j.scriptamat.2022.114531
    [37] MARMY P,LEGUEY T. Impact of irradiation on the tensile and fatigue properties of two titanium alloys[J]. Journal of Nuclear Materials,2001,296(1/2/3):155-164. doi: 10.1016/S0022-3115(1)00564-5
    [38] WANG Z,AYRAULT G,WIEDERSICH H. Segregaton in irradiated titanium alloys[J]. Journal of Nuclear Materials,1982,108:331-338.
    [39] AYRAULT G. Radiation-induced precipitation in single- and dual-ion irradiated Ti-6Al-4V[J]. Journal of Nuclear Materials,1983,113(1):1-13. doi: 10.1016/0022-3115(83)90159-9
    [40] AGARWAL S C,AYRAULT G,POTTER D I,et al. MICROSTRUCTURE of single and dual-ion irradiated Fe-20Ni-15Cr and Ti-6Al-4V alloys[J]. Journal of Nuclear Materials,1979,85:653-657.
    [41] CAO Z,PAN M,HU K,et al. Effect of titanium on the precipitation behaviors of transmutation elements in tungsten-titanium alloys from first-principles calculations[J]. Fusion Engineering and Design,2020,158:111673. doi: 10.1016/j.fusengdes.2020.111673
    [42] ISHIDA T,WAKAI E,HAGIWARA M,et al. Study of the radiation damage effect on titanium metastable beta alloy by high intensity proton beam[J]. Nuclear Materials and Energy,2018,15:169-174. doi: 10.1016/j.nme.2018.04.006
    [43] NORDLUND K,AVERBACK R S. Inverse kirkendall mixing in collision cascades[J]. Physical Review B,1999,59(1):20-23. doi: 10.1103/PhysRevB.59.20
    [44] TÄHTINEN S,MOILANEN P,SINGH B N. Effect of displacement dose and irradiation temperature on tensile and fracture toughness properties of titanium alloys[J]. Journal of Nuclear Materials,2007,367-370:627-632. doi: 10.1016/j.jnucmat.2007.03.042
    [45] PLUMTON D L,KULCINSKI G L,DODD R A. Radiation induced precipitation in 9 MeV Al ion irradiated Ti-6A1-4V[J]. Journal of Nuclear Materials,1987,144(3):264-274. doi: 10.1016/0022-3115(87)90039-0
    [46] BUDZYNSKI P,SKURATOV V A,KOCHANSKI T. Mechanical properties of the alloy Ti-6Al-4V irradiated with swift Kr ion[J]. Tribology International,2009,42(7):1067-1073. doi: 10.1016/j.triboint.2009.03.001
    [47] GHYNGAZOV S,POLTAVTSEVA V,LARIONOV A,et al. Features of changes in the structure and properties of titanium nickelide irradiated with MeV xenon ions[J]. Nuclear Instruments and Methods in Physics Research Section B,2020,464:23-27. doi: 10.1016/j.nimb.2019.11.048
    [48] DUNCAN D R,PUIGH R J,OPPERMAN E K. Titanium alloy tensile properties after neutron irradiation[J]. Journal of Nuclear Materials,1981,104:919-923. doi: 10.1016/0022-3115(82)90717-6
    [49] 陈玮,刘运玺,李志强. 高强β钛合金的研究现状与发展趋势[J]. 航空材料学报,2020,40(3):63-76. doi: 10.11868/j.issn.1005-5053.2020.000071

    CHEN W,LIU Y X,LI Z Q. Research status and development trend of high-strength β titanium alloys[J]. Journal of Aeronautical Materials,2020,40(3):63-76. doi: 10.11868/j.issn.1005-5053.2020.000071
    [50] ZUO J H,WANG Z G,HAN E H. The effect of ion irradiation on the tensile and fatigue properties of Ti-6Al-4V alloy[J]. Materials Science and Engineering:A,2010,527(15):3396-3401. doi: 10.1016/j.msea.2010.02.014
    [51] TÄHTINEN S,MOILANEN P,SINGH B N,et al. Tensile and fracture toughness properties of unirradiated and neutron irradiated titanium alloys[J]. Journal of Nuclear Materials,2002,307/308/309/310/311:416-420. doi: 10.1016/S0022-3115(02)01010-3
    [52] SINGH B K,SINGH V. Effect of fast neutron irradiation on tensile properties of AISI 304 stainless steel and alloy Ti-6Al-4V[J]. Materials Science and Engineering:A,2011,528(16/17):5336-5340. doi: 10.1016/j.msea.2011.03.066
    [53] APPEL F,PAUL J D H,OEHRING M,et al. Creep behavior of TiAl alloys with enhanced high-temperature capability[J]. Metallurgical and Materials Transactions A,2003,34(10):2149-2164. doi: 10.1007/s11661-003-0279-6
    [54] REIS A G dos,REIS D A P,DE MOURA NETO C,et al. Creep behavior study at 500 ℃ of laser nitrided Ti-6Al-4V alloy[J]. Journal of Materials Research and Technology,2013,2(1):48-51. doi: 10.1016/j.jmrt.2013.03.011
    [55] HESKETH R V. Diffusion creep under neutron irradiation[J]. Journal of Nuclear Materials,1969,29(2):217-222. doi: 10.1016/0022-3115(69)90101-9
    [56] LEWTHWAITE G W,PROCTOR K J. Irradiation-creep in a materials testing reactor[J]. Journal of Nuclear Materials,1973,46(1):9-22. doi: 10.1016/0022-3115(73)90117-7
    [57] ZHU H,WEI T,CARR D,et al. Microstructural design for thermal creep and radiation damage resistance of titanium aluminide alloys for high-temperature nuclear structural applications[J]. Current Opinion in Solid State and Materials Science,2014,18(5):269-278. doi: 10.1016/j.cossms.2014.07.003
    [58] ZHU H,WEI T,CARR D,et al. A comparison of microstructural strengthening for thermal creep and radiation damage resistance of titanium aluminide alloys[J]. Journal of Nuclear Materials,2013,438(1/2/3):190-192. doi: 10.1016/j.jnucmat.2013.03.020
    [59] NYGREN R E. Irradiation creep studies of titanium alloys[J]. Journal of Nuclear Materials,1979,85:861-865.
    [60] MAGNUSSON P,CHEN J,HOFFELNER W. High temperature creep of a helium-implanted titanium aluminide alloy[J]. Journal of Nuclear Materials,2011,416(1/2):60-64. doi: 10.1016/j.jnucmat.2010.11.094
    [61] CHEN J,JUNG P,NAZMY M,et al. In situ creep under helium implantation of titanium-aluminum alloy[J]. Journal of Nuclear Materials,2006,352(1/2/3):36-41. doi: 10.1016/j.jnucmat.2006.02.039
    [62] BOEHLERT C J,COWEN C J,TAMIRISAKANDALA S,et al. In situ scanning electron microscopy observations of tensile deformation in a boron-modified Ti-6Al-4V alloy[J]. Scripta Materialia,2006,55(5):465-468. doi: 10.1016/j.scriptamat.2006.05.008
    [63] CHEN W,BOEHLERT C J. Characterization of the microstructure, tensile and creep behavior of powder metallurgy processed and rolled Ti-6Al-4V-1B alloy[J]. Key Engineering Materials,2010,436:195-203. doi: 10.4028/www.scientific.net/KEM.436.195
    [64] 张永强,陶彦辉,张黎,等. 激光辐照超音速气流下TA15钛合金和LY12铝合金的热响应[J]. 强激光与粒子束,2014,26(8):29-34. doi: 10.11884/HPLPB201426.081005

    ZHANG Y Q,TAO Y H,ZHANG L,et al. Thermal response of TA15 titanium alloy and LY12 aluminum alloy irradiated by laser under supersonic tangential flow[J]. High Power Laser and Particle Beams,2014,26(8):29-34. doi: 10.11884/HPLPB201426.081005
    [65] 刘悦,汤鹏正,杨昆明,等. 抗辐照损伤金属基纳米结构材料界面设计及其响应行为的研究进展[J]. 金属学报,2021,57(2):150-170. doi: 10.11900/0412.1961.2020.00169

    LIU Y,TANG P Z,YANG K M,et al. Research progress on the interface design and interface response of irradiation resistant metal-based nanostructured materials[J]. Acta Metallurgica Sinica,2021,57(2):150-170. doi: 10.11900/0412.1961.2020.00169
    [66] CHEN W,BOEHLERT C J,PAYZANT E A,et al. The effect of processing on the 455 ℃ tensile and fatigue behavior of boron-modified Ti-6Al-4V[J]. International Journal of Fatigue,2010,32(3):627-638. doi: 10.1016/j.ijfatigue.2009.04.013
    [67] GURRAPPA I. Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications[J]. Materials Characterization,2003,51(2/3):131-139. doi: 10.1016/j.matchar.2003.10.006
    [68] 张旺峰,李兴无,马济民,等. 组织类型对钛合金损伤容限性能的影响及电镜原位观察[J]. 航空材料学报,2006,26(3):313-314. doi: 10.3969/j.issn.1005-5053.2006.03.070

    ZHANG W F,LI X W,MA J M,et al. Effect of microstructure on damage tolerance properties of and SEM in-situ observation for titanium alloy[J]. Journal of Aeronautical Materials,2006,26(3):313-314. doi: 10.3969/j.issn.1005-5053.2006.03.070
    [69] AMROUSSIA A,AVILOV M,BOEHLERT C J,et al. Swift heavy ion irradiation damage in Ti-6Al-4V and Ti-6Al-4V-1B:study of the microstructure and mechanical properties[J]. Nuclear Instruments and Methods in Physics Research Section B,2015,365:515-521. doi: 10.1016/j.nimb.2015.09.029
    [70] LEGUEY T,BALUC N,SCHÄUBLIN R,et al. Structure-mechanics relationships in proton irradiated pure titanium[J]. Journal of Nuclear Materials,2002,307/308/309/310/311:696-700. doi: 10.1016/S0022-3115(02)01190-X
    [71] FU E G,CARO M,ZEPEDA-RUIZ L A,et al. Surface effects on the radiation response of nanoporous Au foams[J]. Applied Physics Letters,2012,101(19):191607. doi: 10.1063/1.4764528
    [72] DEMKOWICZ M J,HOAGLAND R G,HIRTH J P. Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites[J]. Physical Review Letters,2008,100(13):136102. doi: 10.1103/PhysRevLett.100.136102
    [73] HAN W Z,MARA N A,WANG Y Q,et al. He implantation of bulk cu–nb nanocomposites fabricated by accumulated roll bonding[J]. Journal of Nuclear Materials,2014,452(1):57-60. doi: 10.1016/j.jnucmat.2014.04.034
    [74] WANG J,LI N,ANDEROGLU O,et al. Detwinning mechanisms for growth twins in face-centered cubic metals[J]. Acta Materialia,2010,58(6):2262-2270. doi: 10.1016/j.actamat.2009.12.013
    [75] BUDZYŃSKI P,KAMIŃSKI M,SUROWIEC Z,et al. Effects of xenon-ion irradiation on the tribological properties and crystal structure of titanium and its alloy Ti6Al4V[J]. Tribology International,2021,156:106854. doi: 10.1016/j.triboint.2021.106854
    [76] HSIUNG L,FLUSS M,TUMEY S,et al. HRTEM study of oxide nanoparticles in K3-ODS ferritic steel developed for radiation tolerance[J]. Journal of Nuclear Materials,2011,409(2):72-79. doi: 10.1016/j.jnucmat.2010.09.014
    [77] HAN W Z,DEMKOWICZ M J,FU E G,et al. Effect of grain boundary character on sink efficiency[J]. Acta Materialia,2012,60(18):6341-6351. doi: 10.1016/j.actamat.2012.08.009
    [78] HSIUNG L L,FLUSS M J,TUMEY S J,et al. Formation mechanism and the role of nanoparticles in Fe-Cr ODS steels developed for radiation tolerance[J]. Physical Review B,2010,82(18):184103. doi: 10.1103/PhysRevB.82.184103
    [79] BEYERLEIN I J,DEMKOWICZ M J,MISRA A,et al. Defect-interface interactions[J]. Progress in Materials Science,2015,74:125-210. doi: 10.1016/j.pmatsci.2015.02.001
    [80] BEYERLEIN I J,CARO A,DEMKOWICZ M J,et al. Radiation damage tolerant nanomaterials[J]. Materials Today,2013,16(11):443-449. doi: 10.1016/j.mattod.2013.10.019
  • 加载中
图(5)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  60
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-09
  • 修回日期:  2022-07-11
  • 刊出日期:  2022-12-02

目录

    /

    返回文章
    返回