热处理对GH2132合金组织与性能影响的研究进展

赵振 张十庆 李方 王宏 何钦生 邹兴政 王兆英 白雨松

赵振,张十庆,李方,等. 热处理对GH2132合金组织与性能影响的研究进展[J]. 航空材料学报,2023,43(6):52-64 doi: 10.11868/j.issn.1005-5053.2022.000130
引用本文: 赵振,张十庆,李方,等. 热处理对GH2132合金组织与性能影响的研究进展[J]. 航空材料学报,2023,43(6):52-64 doi: 10.11868/j.issn.1005-5053.2022.000130
ZHAO Zhen,ZHANG Shiqing,LI Fang,et al. Research progresses in effect of heat treatment on microstructure and properties of GH2132 alloy[J]. Journal of Aeronautical Materials,2023,43(6):52-64 doi: 10.11868/j.issn.1005-5053.2022.000130
Citation: ZHAO Zhen,ZHANG Shiqing,LI Fang,et al. Research progresses in effect of heat treatment on microstructure and properties of GH2132 alloy[J]. Journal of Aeronautical Materials,2023,43(6):52-64 doi: 10.11868/j.issn.1005-5053.2022.000130

热处理对GH2132合金组织与性能影响的研究进展

doi: 10.11868/j.issn.1005-5053.2022.000130
基金项目: 重庆英才-创新领军人才(22039011)
详细信息
    通讯作者:

    张十庆(1974—),男,主要从事金属功能材料及器件的研究,E-mail: shiqingzhang@tom.com

  • 中图分类号: TG156,TG142

Research progresses in effect of heat treatment on microstructure and properties of GH2132 alloy

  • 摘要: GH2132合金作为以Fe-25Ni-15Cr为基体高温合金的代表材料之一,因其具有良好的综合性能已成为650 ℃以下广泛使用的高温材料。目前对GH2132合金的研究主要集中在固溶热处理、固溶+时效热处理以及直接时效热处理三个方面,本文总结了近年来对该合金在这三方面的研究,分析了热处理工艺对组织与性能的影响。GH2132合金在固溶处理过程要关注Laves及M3B2相的溶解对晶粒尺寸的影响,防止晶粒粗化,固溶后的合金表现出低强度高塑性的特点。时效处理工艺的制定需结合固溶处理工艺,考虑耦合作用的影响,同时防止发生γ′→η转变,降低强化效果。GH2132合金组织对变形量比较敏感,变形量越大,应选择较低的时效温度或较短的时效时间。

     

  • 图  1  不同时效时间后GH2132合金强化相γ'尺寸及晶界形貌[152128]

    Figure  1.  Strengthening phase γ' size and grain boundary morphology images of GH2132 alloy after different aging time[152128]

    图  2  GH2132合金中η相SEM形貌(热轧态+时效态)[35] (a)840 ℃/4 h;(b)840 ℃/12 h

    Figure  2.  SEM microstructure images of aging heat treatment after hot rolling GH2132alloy[35] (a)840 ℃ for 4 h;(b)840 ℃ for 12 h

    图  3  不同固溶处理温度对GH2132合金室温力学性能的影响[52325] (a)抗拉强度;(b)屈服强度;(c)伸长率;(d)断面收缩率

    Figure  3.  Effect of different solution treatment temperatures on mechanical properties of GH2132 alloy at room temperature[52325]  (a) tensile strength;(b) yield strength;(c) elongation;(d) reduction of area

    图  4  GH2132合金的时效硬化曲线[5] (a)时效温度;(b)时效时间

    Figure  4.  Aging hardening curve of GH2132 alloy[5]  (a) aging temperatures;(b) aging times

    图  5  时效温度对GH2132合金室温力学性能的影响[516-172428] (a)抗拉强度;(b)屈服强度;(c)伸长率;(d)断面收缩率

    Figure  5.  Effect of aging temperature on mechanical properties of GH2132 alloy at room temperature[516-172428]  (a) tensile strength;(b) yield strength;(c) elongation;(d) reduction in area

    图  6  不同形变量及时效制度对GH2132合金力学性能的影响[20919496] (a)抗拉强度;(b)屈服强度;(c)伸长率;(d)断面收缩率   

    Figure  6.  Effects of different deformation and aging process on mechanical properties of GH2132 alloy[20919496] (a) tensile strength;(b) yield strength;(c) elongation;(d) reduction in area

  • [1] 黄乾尧,李汉康. 高温合金[M]. 北京:冶金工业出版社,2002:4,67-69.

    HUANG Q Y,LI H K. Superalloy[M]. Beijing:Metallurgical Industry Press,2002:4,67-69.
    [2] 师昌绪,陆达,荣科. 中国高温合金四十年[M]. 北京:中国科学技术出版社,1996:14-25.

    SHI C X,LU D,RONG K. Forty years of superalloys in china[M]. Beijing:China Science and Technology Press,1996:14-25.
    [3] 许昌淦. 涡轮盘材料及其热加工的现状与发展[J]. 航空学报,1987,8(1):10-19.

    XU C G. Current situation and development of turbine disc materials and their thermal processing[J]. Acta Aeronautica Sinica,1987,8(1):10-19.
    [4] ZHAO M J,GUO Z F,LIANG H,et al. Effect of boron on the microstructure,mechanical properties and hydrogen performance in a modified A286[J]. Materials Science & Engineering :A,2010,527(21/22):5844-5851.
    [5] 北京钢铁学院高温合金教研室. GH132合金[M]. 北京:国防工业出版社,1980:1,149-176.

    Beijing Iron and Steel Institute Superalloy Teaching and Research Section. GH132 alloy[M]. Beijing:National Defense Industry Press,1980:1,149-176.
    [6] 中国航空材料手册委员会. 中国航空材料手册(第2版)变形高温合金、铸造高温合金[M]. 北京:中国标准出版社,1989:93-112.

    China Aerospace Materials Manual Committee. China aerospace materials manual (second edition) deformed superalloys,casting superalloys[M]. Beijing:China Standard Press,1989:93-112.
    [7] KOBAYASHI K,YAMAGUCHI K,HAYAKAWA M,et al. High-temperature fatigue properties of austenitic superalloys 718,A286 and 304L[J]. International Journal of Fatigue,2008,30(10/11):1978-1984. doi: 10.1016/j.ijfatigue.2008.01.004
    [8] 崔令江,林熙原,朱强,等. 高温合金热处理工艺研究进展[J]. 材料导报,2016,30(7):106-110.

    CUI L J,LIN X Y,ZHU Q,et al. Research progress on heat treatment of superalloys[J]. Materials Review,2016,30(7):106-110.
    [9] 孙枫,王广生,佟小军. 航空工业中热处理现状和发展[J]. 金属热处理,2014,39(1):58-66.

    SUN F,WANG G S,TONG X J. Current situation and development of heat treatment in aviation industry[J]. Metal Heat Treatment,2014,39(1):58-66.
    [10] 董瀚,廉心桐,胡春东,等. 钢的高性能化理论与技术进展[J]. 金属学报,2020,56(4):558-582.

    DONG H,LIAN X T,HU C D,et al. Progress in the theory and technology of high performance of steel[J]. Acta Metallurgica Sinica,2020,56(4):558-582.
    [11] MORI U T. Creep deformation of austenitic steels at medium and low temperatures[J]. Cryogenics,2000,40(2):117-126. doi: 10.1016/S0011-2275(00)00016-3
    [12] 杜金辉,吕旭东,董建新,等. 国内变形高温合金研制进展[J]. 金属学报,2019,55(9):1115-11132.

    DU J H,LV X D,DONG J X,et al. Development of domestic wrought superalloys[J]. Acta Metallurgica Sinica,2019,55(9):1115-11132.
    [13] 杜金辉,赵光普,邓群,等. 中国变形高温合金研制进展[J]. 航空材料学报,2016,36(3):27-39. doi: 10.11868/j.issn.1005-5053.2016.3.005

    DU J H,ZHAO G P,DENG Q,et al. Development of wrought superalloys in china[J]. Journal of Aeronautical Materials,2016,36(3):27-39. doi: 10.11868/j.issn.1005-5053.2016.3.005
    [14] 杨金侠,李金国,王猛,等. 热处理工艺对一种新型铸造镍基高温合金的组织和性能影响[J]. 金属学报,2012,48(6):654-660.

    YANG J X,LI J G,WANG M,et al. Effect of heat treatment process on microstructure and properties of a new cast nickel-based superalloy[J]. Acta Metallurgica Sinica,2012,48(6):654-660.
    [15] YANG C L,ZHU J,OU G M,et al. Influence of aging treatment on microstructure and properties of GH2132 [J]. Advanced Materials Research,2015,1082:173-176.
    [16] 陈琪,陈雅文,孔凡亚. 热处理对超大变形量GH2132合金力学性能的影响[J]. 热加工工艺,2012,41(20):184-188. doi: 10.14158/j.cnki.1001-3814.2012.20.054

    CHEN Q,CHEN Y W,KONG F Y. Effect of heat treatment on mechanical properties of super large deformation GH2132 alloy[J]. Hot Working Technology,2012,41(20):184-188. doi: 10.14158/j.cnki.1001-3814.2012.20.054
    [17] 冯光勇,宫晓春. 时效温度对GH2132合金组织与力学性能的影响[J]. 金属热处理,2020,45 (1):96-100.

    FENG G Y,GONG X C. Effect of aging temperature on microstructure and mechanical properties of GH2132 alloy[J]. Heat Treatment of Metals,2020,45 (1):96-100.
    [18] 胡隆伟,叶文君,欧阳建文,等. 时效制度对A286性能的影响[J]. 航空热处理,2014,23(1):86-88.

    HU L W,YE W J,OUYANG J W,et al. Influence of the aging system on the performance of A286[J]. Aeronautical Heat Treatment,2014,23(1):86-88.
    [19] SAVOIE M,ESNOUF C,FOURNIER L,et al. Influence of ageing heat treatment on alloy A-286 microstructure and stress corrosion cracking behaviour in PWR primary water[J]. Journal of Nuclear Materials,2007,360(3):222-230. doi: 10.1016/j.jnucmat.2006.10.003
    [20] 秦鹤勇,裴丙红,董建,等. 高强度GH2132合金棒材冷拔工艺的研究[J]. 钢铁研究学报,2010,22(9):48-52.

    QIN H Y,PEI B H,DONG J,et al. Research on cold drawing process of high-strength GH2132 alloy bars[J]. Journal of Iron and Steel Research,2010,22(9):48-52.
    [21] 姚志浩,阮雅婷,董建新,等. 固溶时效热处理对A286合金组织演变规律的影响[J]. 材料热处理学报,2016,37(7):40-47.

    YAO Z H,RUAN Y T,DONG J X,et al. Effect of solution aging heat treatment on the microstructure evolution of A286 alloy[J]. Journal of Materials Heat Treatment,2016,37(7):40-47.
    [22] 金万军,程定宇,王建宏,等. 热处理对A286合金力学性能的影响[J]. 热加工工艺,2018,47(24):236-237,241. doi: 10.14158/j.cnki.1001-3814.2018.24.059

    JIN W J,CHENG D Y,WANG J H,et al. Effect of heat treatment on mechanical properties of A286 alloy[J]. Hot Working Technology,2018,47(24):236-237,241. doi: 10.14158/j.cnki.1001-3814.2018.24.059
    [23] 代礼斌,万红,王东哲,等. 热处理工艺对A286合金组织和性能的影响[J]. 热加工工艺,2018,47(22):181-184.

    DAI L B,WAN H,WANG D Z,et al. Effect of heat treatment process on the microstructure and properties of A286 alloy[J]. Hot Working Technology,2018,47(22):181-184.
    [24] 欧梅桂,杨春林,杨祖建. 热处理工艺对高温合金GH2132力学性能的影响[J]. 金属热处理,2014,39(6):91-93.

    OU M G,YANG C L,YANG Z J. Effect of heat treatment process on mechanical properties of superalloy GH2132[J]. Heat Treatment of Metals,2014,39(6):91-93.
    [25] 代礼斌,李济林,万红,等. 热处理工艺对含铌GH2132合金组织和性能的影响[J]. 机械工程材料,2014,38(9):55-58.

    DAI L B,LI J L,WAN H,et al. Effect of heat treatment process on microstructure and properties of niobium-containing GH2132 alloy[J]. Mechanical Engineering Materials,2014,38(9):55-58.
    [26] 代礼斌,王东哲,莫燕,等. 时效工艺对GH2132高温合金组织和性能的影响[J]. 金属热处理,2017,42(8):142-146. doi: 10.13251/j.issn.0254-6051.2017.08.031

    DAI L B,WANG D Z,MO Y,et al. Effect of aging process on microstructure and properties of GH2132 superalloy[J]. Heat Treatment of Metals,2017,42(8):142-146. doi: 10.13251/j.issn.0254-6051.2017.08.031
    [27] 裴丙红,张红斌,刘勤学,等. 时效温度对高钛GH2132合金性能影响的研究[J]. 特钢技术,2006,11(1):1-5. doi: 10.16683/j.cnki.issn1674-0971.2006.01.001

    PEI B H,ZHANG H B,LIU Q X,et al. Study on the effect of aging temperature on the properties of high-titanium GH2132 alloy[J]. Special Steel Technology,2006,11(1):1-5. doi: 10.16683/j.cnki.issn1674-0971.2006.01.001
    [28] 樊开伦,邹刚,裴烈勇,等. 时效制度对GH2132高温合金性能的影响[J]. 金属热处理,2016,41(1):66-70. doi: 10.13251/j.issn.0254-6051.2016.01.013

    FAN K L,ZOU G,PEI L Y,et al. Effect of aging regime on properties of GH2132 superalloy[J]. Heat Treatment of Metals,2016,41(1):66-70. doi: 10.13251/j.issn.0254-6051.2016.01.013
    [29] 秦鹤勇,崔灿,王雪,等. 优质高强GH2132合金的形变强化和热处理制度研究[J]. 钢铁研究学报,2011,23(增刊2):44-47. doi: 10.13228/j.boyuan.issn1001-0963.2011.s2.013

    QIN H Y,CUI C,WANG X,et al. Study on deformation strengthening and heat treatment regime of high-quality and high-strength GH2132 alloy[J]. Journal of Iron and Steel Research,2011,23(Suppl 2):44-47. doi: 10.13228/j.boyuan.issn1001-0963.2011.s2.013
    [30] 刘勤学. GH132合金大型烟机涡轮盘热处理制度的研究[J]. 重庆特钢,1992(2):137-141.

    LIU Q X. Study on heat treatment system of GH132 alloy large hood turbine disk[J]. Chongqing Special Steel,1992(2):137-141.
    [31] 王治政. ϕ1250 mmGH132合金烟气轮机涡轮盘性能的研究[J]. 五钢科技,1993(6):51-55.

    WANG Z Z. Study on the performance of ϕ1250 mm GH132 alloy flue gas turbine turbine disk[J]. Wugang Science and Technology,1993(6):51-55.
    [32] 邰清安,关红,国振兴,等. 热处理制度对GH2132合金组织性能的影响[J]. 材料热处理学报,2015,36(2):55-59. doi: 10.13289/j.issn.1009-6264.2015.02.011

    TAI Q A,GUAN H,GUO Z X,et al. Effect of heat treatment regime on microstructure and properties of GH2132 alloy[J]. Journal of Materials Heat Treatment,2015,36(2):55-59. doi: 10.13289/j.issn.1009-6264.2015.02.011
    [33] PADILHA A F,PLAUT R L,RIOS P R. Annealing of cold-worked austenitic stainless steels[J]. Transactions of the Iron & Steel Institute of Japan,2007,43(2):135-143.
    [34] MANDAL S,BHADURI A K,SARMA V S. Studies on twinning and grain boundary character distribution during anomalous grain growth in a Ti-modified austenitic stainless steel[J]. Materials Science & Engineering: A,2009,515(1/2):134-140.
    [35] SEIFOLLAHI,M,RAZAVI,et al. The mechanism of η phase precipitation in A286 superalloy during heat treatment[J]. Journal of Materials Engineering and Performance,2013,22(10):3063-3069. doi: 10.1007/s11665-013-0592-1
    [36] DUCKI K J,M HETMAŃCZYK,KUC D. Analysis of the precipitation process of the intermetallic phases in a high-temperature Fe-Ni austenitic alloy[J]. Materials Chemistry & Physics,2003,81(2/3):490-492.
    [37] THOMPSON A W,BROOKS J A. Hydrogen performance of precipitation-strengthened stainless steels based on A-286[J]. Metallurgical Transactions A,1975,(6):1431-1442.
    [38] BROOKS J A,THOMPSON A W. Microstructure and hydrogen effects on fracture in the alloy A-286[J]. Metallurgical and Materials Transactions A,1993,24(9):1983-1991. doi: 10.1007/BF02666333
    [39] 孙跃军,尚勇,刘彩琴,等. Al含量对镍基高温合金组织和性能的影响[J]. 热加工工艺,2012,41(20):79-82. doi: 10.14158/j.cnki.1001-3814.2012.20.033

    SUN Y J,SHANG Y,LIU C Q,et al. Effect of Al content on the microstructure and properties of nickel-based superalloys[J]. Hot Working Technology,2012,41(20):79-82. doi: 10.14158/j.cnki.1001-3814.2012.20.033
    [40] XU H P,NGAN A H W,DUGGAN B J,et al. Toughening of γ′-Ni3A1 by γ precipitation[J]. Materials Letters,1997,31(3-6):233-237. doi: 10.1016/S0167-577X(96)00280-7
    [41] 谢锡善. 我国高温材料的应用与发展[J]. 机械工程材料,2004,28(1):2-8. doi: 10.3969/j.issn.1000-3738.2004.01.002

    XIE X S. Application and development of high temperature materials in my country[J]. Mechanical Engineering Materials,2004,28(1):2-8. doi: 10.3969/j.issn.1000-3738.2004.01.002
    [42] 杨钢,孙利军,张丽娜,等. 形变孪晶的消失与退火孪晶的形成机制[J]. 钢铁研究学报,2009,21(2):39-43. doi: 10.13228/j.boyuan.issn1001-0963.2009.02.002

    YANG G,SUN L J,ZHANG L N,et al. The disappearance of deformation twins and the formation mechanism of annealing twins[J]. Journal of Iron and Steel Research,2009,21(2):39-43. doi: 10.13228/j.boyuan.issn1001-0963.2009.02.002
    [43] LIFSHITZ I M,SLYOZOV V. The kinetics of precipitation from supersaturated solid solutions[J]. Journal of Physics & Chemistry of Solids,1961,19(1):35-50.
    [44] DUCKI K J. Structure and precipitation strengthening in a high-temperature Fe-Ni alloy[J]. Archives of Materials Science & Engineering,2007,28(4):203-210.
    [45] THOMPSON A W,BROOKS J A. The mechanism of precipitation strengthening in an iron-base superalloy[J]. Acta Metallurgica,1982,30(12):2197-2203.
    [46] DUCKI K J. Analysis of the structure and precipitation strengthening in a creep resisting Fe-Ni alloy[J]. Journal of Achievements in Materials & Manufacturing Engineering,2007,21(2):25-28.
    [47] DUCKI K J. Precipitation and growth of intermetallic phase in a high-temperature Fe-Ni alloy[J]. Journal of Achievements of Materials and Manufacturing Engineering,2006,18(1/2):87-90.
    [48] KUSABIRAKI K,TAKASAWA Y,OOKA T. Precipitation and growth of Gamma-phases and Eta-phases in 53Fe-26Ni-15Cr alloy[J]. ISIJ Int. 1995,35(5):542-547.
    [49] XU Y,YANG C,XIAO X,et al. Strengthening behavior of Al and Ti elements at room temperature and high temperature in modified Nimonic 80A[J]. Materials Chemistry & Physics,2012,134(2/3):706-715.
    [50] PANAHI M H,PIRAII H. Experimental study of high temperature fracture behavior of A286 superalloy at 650℃[J]. Physical Mesomechanics,2018,21(2):157-164. doi: 10.1134/S1029959918020091
    [51] ZHAO S Q,XIE X S,GAYLORD D,et al. Microstructural stability and mechanical properties of a new nickel-based superalloy[J]. Materials Science & Engineering ∶A,2003,355(1/2):96-105.
    [52] CICCO H D,LUPPO M I,GRIBAUDO L M,et al. Microstructural development and creep behavior in A286 superalloy[J]. Materials Characterization,2004,52(2):85-92. doi: 10.1016/j.matchar.2004.03.007
    [53] ZHONG Z,GU Y,YONG Y. Microstructural stability and mechanical properties of a newly developed Ni–Fe-base superalloy[J]. Materials Science & Engineering: A,2015,622(12):101-107.
    [54] SHINGLEDECKER J P,EVANS N D,PHARR G M. Influences of composition and grain size on creep–rupture behavior of Inconel alloy 740[J]. Materials Science & Engineering: A,2013,578(20):277-286.
    [55] ZHAO J C,RAVIKUMAR V,BELTRAN A M. Phase precipitation and phase stability in nimonic 263[J]. Metallurgical & Materials Transactions A,2001,32(6):1271-1282.
    [56] LI X,ZHANG J,RONG L,et al. Cellular η phase precipitation and its effect on the tensile properties in an Fe-Ni-Cr alloy[J]. Materials Science & Engineering:A,2008,488(1/2):547-553.
    [57] ZHAO S Q,XIE X S,SMITH G D. Research and improvement on structure stability and corrosion resistance of nickel-base superalloy inconel alloy 740[J]. Materials & Design,2006,27(10):1120-1127.
    [58] HEO Y,TAKEGUCHI M,FURUYA K,et al. Transformation of DO24 η-Ni3Ti phase to face-centered cubic austenite during isothermal aging of an Fe-Ni-Ti alloy[J]. Acta Materialia. 2009,57(4):1176-1187.
    [59] CHEN H,ZHAO M,RONG L. Effect of Ti content on the microstructure and mechanical properties of electron beam welds in Fe-Ni based alloy[J]. Materials Science and Engineering:A,2013,571:33-37. doi: 10.1016/j.msea.2013.02.001
    [60] 金泽光. GH132合金在长期时效过程中组织稳定性的研究[J]. 四川冶金,1990,12(4):41-50.

    JIN Z G. Study on the microstructure stability of GH132 alloy during long-term aging process[J]. Sichuan Metallurgy,1990,12(4):41-50.
    [61] BARLOW C Y,RALPH B. Observations of cellular transformation products in nickel-base superalloys[J]. Journal of Materials Science,1979,14(10):2500-2508. doi: 10.1007/BF00737041
    [62] MARTIN O,TIEDRA P D,SAN-JUAN M. Study of influence of gamma prime and eta phases on corrosion behaviour of A286 superalloy by using electrochemical potentiokinetic techniques[J]. Materials & Design,2015,87(15):266-271.
    [63] WU H,OSHIDA Y,HAMADA S,et al. Fatigue strength properties of precipitation strengthening stainless steel A286 focused attention on small fatigue crack behaviour [J]. Procedia Engineering,2011,10(7):1977-1982.
    [64] YAO X X. On the grain boundary hardening in a B-bearing 304 austenitic stainless steel[J]. Materials Science & Engineering: A,1999,271(1/2):353-359.
    [65] JAHAZI M,JONAS J J. The non-equilibrium segregation of boron on original and moving austenite grain boundaries[J]. Materials Science & Engineering: A,2002,335(1/2):49-61.
    [66] SOURMAIL T,OKUDA T,TAYLOR J E. Formation of chromium borides in quenched modified 310 austenitic stainless steel[J]. Scripta Materialia,2004,50(10):1271-1276.
    [67] KURBAN M,ERB U,AUST K T. A grain boundary characterization study of boron segregation and carbide precipitation in alloy 304 austenitic stainless steel[J]. Scripta Materialia,2006,54(6):1053-1058.
    [68] SETO K,LARSON D J,WARREN P J,et al. Grain boundary segregation in boron added interstitial free steels studied by 3-dimensional atom probe[J]. ScriptaMaterialia,1999,40(9):1029-1034.
    [69] 郭建亭. 高温合金材料学—应用基础理论[M]. 北京:科学出版社,2008.

    GUO J T. The basic theory of application of superalloy materials (Volume 1)[M]. Beijing:Science Press,2008.
    [70] RHO B S,HONG H K,NAM S W. Analysis of the intergranular cavitation of Nb-A286 alloy in high temperature low cycle fatigue using EBSD technique[J]. Scripta Materialia,2000,43(2):167-173.
    [71] RHO B S,NAM S W. The effect of applied strain range on the fatigue cracking in Nb-A286 iron-base superalloy[J]. Materials Letters,2001,48(1):49-55. doi: 10.1016/S0167-577X(00)00279-2
    [72] CHEN G,BOHUA W U,ZHOU L,et al. Effect of Nb on strengthening of Fe-base superalloy at medium high temperature [J]. Acta Metallurgica Sinica,1992,28(9):385-390.
    [73] MURAKUMO T,KOIZUMI Y,KOBAYASHI K,et al. Creep strength of Ni-Base single-crystal superalloys on the γ/γ' tie-line[C]// Proceedings of the International Symposium on Superalloys.[S.l.]:[s.n.],2004:155-162.
    [74] 李玉清,刘锦岩. 高温合金晶界间隙相[M]. 北京:冶金工业出版社,1990:21-27.

    LI Y Q,LIU J Y. Superalloy grain boundary interstitial phase[M]. Beijing:Metallurgical Industry Press,1990:21-27.
    [75] CICCO H D,LUPPO M I,RAFFAELI H,et al. Creep behavior of an A286 type stainless steel[J]. Materials Characterization,2005,55(2):97-105. doi: 10.1016/j.matchar.2005.01.001
    [76] NEMBACH E,NEITE G. Precipitation hardening of superalloys by ordered γ′-particles[J]. Progress in Materials Science,1985,29(3):177-319. doi: 10.1016/0079-6425(85)90001-5
    [77] YAO Z H,RUAN Y T,DONG J X,et al. Study on gamma prime and carbides of alloy a286 by traditional thermodynamic calculation[J]. High Temperature Materials & Processes,2017,37(5):495-507.
    [78] KELLY A,NICHOLSON R B. Precipitation hardening [J]. Progress in Materials Science,1963,10:151-391. doi: 10.1016/0079-6425(63)90010-0
    [79] SINGHAL L K,MARTIN J W. The mechanism of tensile yield in an age-hardened steel containing γ′ (ordered Ni3Ti) precipitates[J]. Acta Metallurgica,1968,16(7):947-953.
    [80] RHO B S,NAM S W. Fatigue-induced precipitates at grain boundary of Nb-A286 alloy in high temperature low cycle fatigue[J]. Materials Science & Engineering :A,2000,291(1/2):54-59.
    [81] GUO Z,LIANG H,ZHAO M,et al. Effect of boron addition on hydrogen embrittlement sensitivity in Fe-Ni based alloys[J]. Materials Science & Engineering :A,2010,527(24/25):6620-6625.
    [82] LI X,JIAN Z,RONG L,et al. Effect of twins on the moderate temperature tensile deformation of a γ′ strengthened Fe-based superalloy[J]. Journal of Alloys & Compounds,2009,467(1/2):383-389.
    [83] MERABTINE R,DEVAUD-RZEPSKI J,TRICHET M F,et al. Two-phase internetallic alloy Ni3(Al,Si):microstructure and mechanical properties[J]. Internetallics,2001,9(12):1015-1020. doi: 10.1016/S0966-9795(01)00062-0
    [84] GENG M F. Crack growth behavior and fracture feature of GH2132 under creep-fatigue conditions[J]. Acta Metallurgica Sinica,1997(6):495-500.
    [85] FARVIZI M,ASGARI S. Effects of cold work prior to aging on microstructure of AEREX™350 superalloy[J]. Materials Science and Engineering:A,2008,48(1/2):434-438.
    [86] RHO B S,NAM S W,XIE X. The effect of test temperature on the intergranular cracking of Nb-A286 alloy in low cycle fatigue[J]. Journal of Materials Science,2002,37(1):203-209. doi: 10.1023/A:1013147319646
    [87] KUSABIRAKI K,AMADA E,OOKA T,et al. Epsilon and eta phases precipitated in an Fe-38Ni-13Co-4.7Nb-1.5Ti-0.4Si superalloy[J]. ISIJ Int,1997,37(1):80-86. doi: 10.2355/isijinternational.37.80
    [88] WEI L,ZHAO H,SUN Y,et al. Microstructure evolution and stress rupture properties of A286 superalloy in the 600 to 750 °C temperature range[J]. Materials Research Express,2021(8):1-15.
    [89] 王迪,徐志超,倪克铨,等. 晶界微量σ相对25Ni-15Cr-Fe基高温合金脆化效应的影响[J]. 北京钢铁学院学报,1980(2):47-53.

    WANG D,XU Z C,NI K Q,et al. Effect of grain boundary trace σ on embrittlement effect of 25Ni-15Cr-Fe based superalloy[J]. Journal of Beijing Iron and Steel Institute,1980(2):47-53.
    [90] 何国清,许宗凡. 消除GH2132机加产品粗晶环的探讨[J]. 材料工程,1987(6):31-36 .

    HE G G,XU Z F. Discussion on elimination of coarse crystal rings in GH2132 machined products[J]. Journal of Materials Engineering,1987(6):31-36.
    [91] 柳思成,许彦伟,殷小健,等. 形变量及时效制度对A286高温合金组织和性能的影响[J]. 金属热处理,2019,44(5):167-171. doi: 10.13251/j.issn.0254-6051.2019.05.033

    LIU S C,XU Y W,YIN X J,et al. Effects of deformation amount and aging regime on the microstructure and properties of A286 superalloy[J]. Heat Treatment of Metals,2019,44(5):167-171. doi: 10.13251/j.issn.0254-6051.2019.05.033
    [92] 江玉莲,童晋方,冯治国. A286薄壁圆管局部退火组织的演变机制[J]. 材料热处理学报,2021,42(6):123-129.

    JIANG Y L,TONG J F,FENG Z G. Evolution mechanism of local annealing microstructure of A286 thin-walled round tube[J]. Journal of Materials Heat Treatment,2021,42(6):123-129.
    [93] 吕晶晶,于广娜,宋金贵. 原始晶粒尺寸和锻后变形量对GH2132合金晶粒度的影响[J]. 金属热处理,2017,42(12):48-51.

    LV J J,YU G N,SONG J G. Effect of original grain size and post-forging deformation on grain size of GH2132 alloy [J]. Heat Treatment of Metals,2017,42(12):48-51.
    [94] LIU S C,GAO Y,LIN Z C,et al. Microstructure and properties after deformation and aging process of A286 superalloy[J]. Rare Metals,2019,38(9):864-870. doi: 10.1007/s12598-018-1171-2
    [95] 高温合金上海第五钢铁厂第二中心实验室译. 高温合金[M]. 上海:上海科学技术情报研究所,1976:21.

    Translated by the second central laboratory of shanghai fifth iron and steel plant for superalloys. Superalloys[M]. Shanghai:Shanghai Institute of Science and Technology Information,1976:21.
    [96] 裴丙红,秦鹤勇,何云华. 优质高强GH2132合金冷拔材的研制[J]. 钢铁研究学报,2011,23(增刊2):48-51. doi: 10.13228/j.boyuan.issn1001-0963.2011.s2.014

    PEI B H,QIN H Y,HE Y H. Development of high-quality and high-strength GH2132 alloy cold-drawn material[J]. Journal of Iron and Steel Research,2011,23(Suppl 2):48-51. doi: 10.13228/j.boyuan.issn1001-0963.2011.s2.014
  • 加载中
图(6)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  28
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-04
  • 录用日期:  2023-06-06
  • 修回日期:  2023-06-15
  • 刊出日期:  2023-12-08

目录

    /

    返回文章
    返回

    《航空材料学报》关于谨防假冒期刊的郑重声明

    近期,有不法分子冒充《航空材料学报》期刊及官网,谎称提供论文发表服务,发布虚假约稿信息,骗取作者发表费用,为此,本编辑部郑重声明如下:

    1、http://www.hkclxb.cn 为假冒网站,与《航空材料学报》没有任何关系。我刊没有委托任何第三方机构或个人,代表我刊约稿或提供发表服务。

    2、《航空材料学报》为中文期刊,只接收中文文章投稿,目前不刊登英文文章。

    3. 本刊官网是http://jam.biam.ac.cn/,本刊的官方投稿方式为网上投稿(登录官网首页—作者投稿)。如有不明可电话咨询,联系电话是010-62496277。

    敬请广大读者和作者认真识别,谨防上当受骗。