基于面胞-内胞建模的三维编织复合材料冰球撞击分析方法及验证

赵子豪 刘璐璐 徐凯龙 罗刚 赵振华 陈伟

赵子豪, 刘璐璐, 徐凯龙, 罗刚, 赵振华, 陈伟. 基于面胞-内胞建模的三维编织复合材料冰球撞击分析方法及验证[J]. 航空材料学报, 2023, 43(5): 106-114. doi: 10.11868/j.issn.1005-5053.2022.000173
引用本文: 赵子豪, 刘璐璐, 徐凯龙, 罗刚, 赵振华, 陈伟. 基于面胞-内胞建模的三维编织复合材料冰球撞击分析方法及验证[J]. 航空材料学报, 2023, 43(5): 106-114. doi: 10.11868/j.issn.1005-5053.2022.000173
ZHAO Zihao, LIU Lulu, XU Kailong, LUO Gang, ZHAO Zhenhua, CHEN Wei. Ice-ball impact analysis method and verification of three-dimensional braided composites based on surface unit-cell and interior unit-cell modeling[J]. Journal of Aeronautical Materials, 2023, 43(5): 106-114. doi: 10.11868/j.issn.1005-5053.2022.000173
Citation: ZHAO Zihao, LIU Lulu, XU Kailong, LUO Gang, ZHAO Zhenhua, CHEN Wei. Ice-ball impact analysis method and verification of three-dimensional braided composites based on surface unit-cell and interior unit-cell modeling[J]. Journal of Aeronautical Materials, 2023, 43(5): 106-114. doi: 10.11868/j.issn.1005-5053.2022.000173

基于面胞-内胞建模的三维编织复合材料冰球撞击分析方法及验证

doi: 10.11868/j.issn.1005-5053.2022.000173
基金项目: 国家自然科学基金项目(51975279);航空科学基金(201941052001)
详细信息
    通讯作者:

    罗刚(1980—),男,博士,实验师,主要从事航空发动机吞鸟冰适航符合性研究,联系地址:江苏省南京市秦淮区御道街29号南京航空航天大学(210016),E-mail:luogang@nuaa.edu.cn

  • 中图分类号: V258

Ice-ball impact analysis method and verification of three-dimensional braided composites based on surface unit-cell and interior unit-cell modeling

  • 摘要: 针对碳/环氧树脂三维四向编织复合材料开展冰球高速冲击下的损伤研究。应用空气炮冲击实验系统,分别用三种不同冲击速度进行冲击实验,对试件的主要损伤位置进行工业CT扫描,观察其内部损伤形式。分别考虑面胞区域和内胞区域的不同,应用宏观本构模型和冰球的应变率相关材料模型建立冰球冲击三维编织复合材料的有限元仿真模型,研究复合材料厚度和冰球冲击角度对材料损伤的影响,并与实验进行对比验证。结果表明:面胞区域的基体损伤程度相较于内胞区域更严重;迎弹面的损伤面积一般要大于背弹面;斜撞击的冲击角度对损伤面积和损伤位置有所影响,随着冲击角度降低,复合材料的损伤面积也会减小;提升复合材料板的厚度可以提高吸收能量的能力并降低材料损伤面积。

     

  • 图  1  三维四向编织复合材料单胞的内部纱线几何结构[18] (a)内部晶胞;(b)表面晶胞

    Figure  1.  Yarn geometry structure models in unit-cell of 3D four-directional braided composites[18]  (a)interior unit-cell;(b)surface unit-cell

    图  2  自建的100 mm空气炮冲击实验系统示意图

    Figure  2.  Schematic diagram of self-built 100 mm air gun impact experimental system

    图  3  有限元模型边界条件

    Figure  3.  Boundary conditions for finite element models

    图  4  冰球有限元模型

    Figure  4.  Finite element model of ice-ball

    图  5  厚度方向网格区域划分  (a)2 mm;(b)4 mm;(c)5 mm

    Figure  5.  Sections in thickness direction  (a)2 mm;(b)4 mm;(c)5 mm

    图  6  计算流程图

    Figure  6.  Calculation flow chart

    图  7  冲击后试件CT扫描图 (a)实验 100-1;(b)实验 150-1;(c)实验 200-1

    Figure  7.  CT scan of experimental specimen after impact (a) experiment 100-1;(b)experiment 150-1;(c)experiment 200-1

    图  8  冲击速度150 m/s冲击过程不同时刻仿真与实验图像 (a)实验;(b)仿真;(1)0 ms;(2)0.3 ms;(3)0.65 ms;(4)1.25 ms

    Figure  8.  Simulation and experimental images of impact process at different time with an impact speed of 150 m/s (a)experiment;(b)simulation;(1)0 ms;(2)0.3 ms;(3)0.65 ms;(4)1.25 ms

    图  9  各工况基体损伤情况 (a)前侧表面;(b)后侧表面;(c)前侧内部;(d)后侧内部;(1)101 m/s;(a)151 m/s;(3)191 m/s

    Figure  9.  Damages of the matrix under different conditions (a)front surface;(b)back surface;(c)front interior;(d)back interior;(1)101 m/s;(2)151 m/s;(3)191 m/s

    图  10  冲击速度151 m/s冰球斜撞击平板过程 (a)撞击角度30°;(b)撞击角度60°;(1)0 ms;(2)0.18 ms;(3)0.36 ms;(4)0.54 ms

    Figure  10.  Impact processes of oblique plate impacted by ice-ball with velocity of 151 m/s (a)impact angle 30°;(b)impact angle 60°;(1)0 ms;(2)0.18 ms; (3)0.36 ms;(4)0.54 ms

    图  11  斜撞击平板损伤情况 (a)30°;(b)60°;(1)前侧表面;(2)后侧表面

    Figure  11.  Damage of oblique impact plate (a)30°;(b)60°;(1)front surface;(2)back surface

    图  12  不同冲击角度下平板总能量变化

    Figure  12.  Variations of the total energy absorbed by plates at different impact angels

    图  13  不同厚度平板冲击后基体损伤 (a)2 mm;(b)5 mm;(1)前侧表面;(2)后侧表面;(3)前侧内部;(4)后侧内部

    Figure  13.  Matrix damages after impact with different thicknesses (a)2 mm;(b)5 mm;(1)front surface;(2)back surface;(3)front interior;(4)back interior

    图  14  不同厚度平板吸收能量变化

    Figure  14.  Variations of the total energy absorbed by plates with different thicknesses

    表  1  冰球材料参数[15]

    Table  1.   Material properties of ice-ball[15]

    Young’s modulus/ GPaPoisson’s ratioDensity/
    ( kg·m-3
    Tensile failure pressure/
    MPa
    Quasi-static yield strength/
    MPa
    9.380.338500.5175.2
    下载: 导出CSV

    表  2  冰球屈服强度的应变率强化参数

    Table  2.   Strain rate dependent yield strength of ice-ball

    Strain rate/s−1 Yield strength ratio
    0 1
    0.1 1.01
    0.5 1.5
    1 1.71
    5 2.20
    10 2.42
    50 2.91
    100 3.13
    500 3.62
    1×103 3.84
    5×103 4.33
    1×104 4.55
    5×104 5.04
    1×105 5.25
    5×105 5.75
    1×106 5.96
    下载: 导出CSV

    表  3  TDE86环氧树脂材料参数[21]

    Table  3.   Material properties of TDE86 epoxy resin[21]

    Density /
    ( kg·m-3
    Elastic modulus/GPa Shear modulus/GPa Poisson’s
    ratio
    Compressive strength/MPa Tensile strength/MPa Fracture energy/
    (N/·mm-3
    1190 3.5 1.29 0.35 126 93 0.09
    下载: 导出CSV

    表  4  T700-12K碳纤维材料参数[22]

    Table  4.   Material properties of T700-12K carbon fiber[22]

    Density /
    ( kg·m-3
    Longitudinal tensile elastic modulus/GPaTransverse elastic modulus/GPaLongitudinal shear modulus/GPaTransverse shear modulus/GPaLongitudinal Poisson’ ratioTransverse Poisson’s ratio
    176023015245.35710.280.4
    下载: 导出CSV

    表  5  冲击实验记录

    Table  5.   Experiment record sheet

    ExperimentMass of ice ball/gImpact velocity/(m·s-1Impact energy/J
    100-155.0101 280.53
    100-255.5106 313.48
    100-355.8109 329.70
    150-155.6151 633.87
    150-255.5151 632.73
    150-355.5151 632.73
    200-155.91911019.64
    200-254.6
    下载: 导出CSV
  • [1] 张迪,郑锡涛,孙颖,等. 三维编织与层合复合材料力学性能对比试验[J]. 航空材料学报,2015,35(3):89-96. doi: 10.11868/j.issn.1005-5053.2015.3.015

    ZHANG D,ZHENG X T,SUN Y,et al. Comparative investigation of mechanical properties between 3D braided and laminated composites[J]. Journal of Aeronautical Materials,2015,35(3):89-96. doi: 10.11868/j.issn.1005-5053.2015.3.015
    [2] 范玉青,张丽华. 超大型复合材料机体部件应用技术的新进展——飞机制造技术的新跨越[J]. 航空学报,2009,30(3):534-543.

    FAN Y Q,ZHANG L H,New development of extra large composite aircraft components application technology—advance of aircraft manufacture technology[J]. Acta Aeronautica et Astronautica Sinica,2009,30(3):534-543.
    [3] JENQ S T,KUO J T,SHEU L T. Ballistic impact response of 3-D four-step braided glass/epoxy composites[J]. Key Engineering Materials,1997,141/143:349-366. doi: 10.4028/www.scientific.net/KEM.141-143.349
    [4] 徐静怡,顾伯洪. 编织复合材料弹道冲击破坏形态及模式[J]. 弹道学报,2002(2):39-43. doi: 10.3969/j.issn.1004-499X.2002.02.008

    XU J Y,GU B H. Damage pattern and failure mode of 3-D braided composites under ballistic impact[J]. Journal of Ballistics,2002(2):39-43. doi: 10.3969/j.issn.1004-499X.2002.02.008
    [5] LI D,LU Z,JIANG N,et al. High strain rate behavior and failure mechanism of three-dimensional five-directional carbon/phenolic braided composites under transverse compression[J]. Composites Part B,2011,42(2):309-317. doi: 10.1016/j.compositesb.2010.11.011
    [6] SUN B,ZHANG Y,GU B. Low-velocity impact response and finite element analysis of four-step 3-D braided composites[J]. Applied Composite Materials,2013,20(4):397-413. doi: 10.1007/s10443-012-9279-2
    [7] 谭焕成,许善迎,黄雄,等. 三维四向编织复合材料宏观有限元模型冲击损伤仿真及试验验证[J]. 复合材料学报,2018,35(5):1139-1148. doi: 10.13801/j.cnki.fhclxb.20170821.002

    TAN H C,XU S Y,HUANG X,et al. Macro-scale finite element model for impact damage simulation and experimental verification of three-dimensional four-directional braided composites[J]. Acta Materiae Compositae Sinica,2018,35(5):1139-1148. doi: 10.13801/j.cnki.fhclxb.20170821.002
    [8] 黄雄. 三维四向编织复合材料动态力学性能及鸟撞特性研究[D]. 南京:南京航空航天大学,2018.

    HUANG X. The Study on dynamic mechanical properties and bird-striking characteristics of 3D four-directional braided composites[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2018.
    [9] LI Y,LYU Z,WANG P,et al. Finite element analyses on low-velocity impact responses of three-dimensional braided composites[J]. Fibers and Polymers,2021,22(8):2296-2305. doi: 10.1007/s12221-021-0597-6
    [10] 苏蕴荃,陈昊,侯传涛,等. 基于单胞模型的三维四向编织复合材料力学性能研究[J]. 强度与环境,2022,49(4):34-41.

    SU Y Q,CHEN H,HOU C T,et al. Investigation on the mechanical properties of 3D four-directional braided composites based on the unit cell model[J]. Structure & Environment Engineering,2022,49(4):34-41.
    [11] MCNAUGHTON I I,CHISMAN S W. A study of hail impact at high speed on light alloy plates[R]. Trenton:Naval Air Warfare Center Aircraft Division,1940.
    [12] DORRIS J F. A Plasticity model for the crushing of ice[M]. Berlin,Heidelberg:Springer Berlin Heidelberg,1991:311-337.
    [13] KIM H,KEDWARD K T. Modeling hail ice impacts and predicting impact damage initiation in composite structures [ J ]. AIAA Journal,2000,38(7):1278-1288.
    [14] CARNEY K S,BENSON D J,DUBOIS P,et al. A phenomenological high strain rate model with failure for ice[J]. International Journal of Solids and Structures,2006,43(25/26):7820-7839.
    [15] TIPPMANN J D,KIM H,RHYMER J D. Experimentally validated strain rate dependent material model for spherical ice impact simulation[J]. International Journal of Impact Engineering,2013,57:43-54. doi: 10.1016/j.ijimpeng.2013.01.013
    [16] 莫袁鸣,赵振华,罗刚,等. 复合材料层合板冰雹冲击损伤研究[J]. 重庆理工大学学报(自然科学),2020,34(3):112-121.

    MO Y M,ZHAO Z H,LUO G,et al. Investigation on damage of composite laminates subject to hail impact[J]. Journal of Chongqing University of Technology( Natural Science) 2020,34(3):112-121.
    [17] MOBASHER M E,ADAMS B,MOULD J,et al. Damage mechanics based analysis of hail impact on metal roofs[J]. Engineering Fracture Mechanics,2022,272:108688. doi: 10.1016/j.engfracmech.2022.108688
    [18] 张超. 三维多向编织复合材料宏细观力学性能及高速冲击损伤研究[D]. 南京:南京航空航天大学,2013.

    ZHANG C. Research on macro-meso-mechanical properties and high velocity impact damage of 3D multi-directional braided composites [D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2013.
    [19] 孟卓,孙秦. 冰雹的数值模拟方法初探[J]. 航空计算技术,2009,39(1):22-26. doi: 10.3969/j.issn.1671-654X.2009.01.006

    MENG Z,SUN Q. Methods of numerical simulation on hailstone[J]. Aeronautical Computing Technique,2009,9(1):22-26. doi: 10.3969/j.issn.1671-654X.2009.01.006
    [20] XU K,CHEN W,LIU L,et al. A hierarchical multiscale strategy for analyzing the impact response of 3D braided composites[J]. International Journal of Mechanical Sciences,2021,193:106167. doi: 10.1016/j.ijmecsci.2020.106167
    [21] HE C,GE J,QI D,et al. A multiscale elastoplastic damage model for the nonlinear behavior of 3D braided composites[J]. Composites Science and Technology,2019,171:21-33. doi: 10.1016/j.compscitech.2018.12.003
    [22] TAN H,HUANG X,LIU L,et al. Dynamic compressive behavior of four-step three-dimensional braided composites along three directions[J]. International Journal of Impact Engineering,2019,134:103366. doi: 10.1016/j.ijimpeng.2019.103366
    [23] 许善迎,谭焕成,关玉璞,等. 三维四向编织复合材料力学性能预测及实验验证[J]. 材料工程,2018,46(6):132-140. doi: 10.11868/j.issn.1001-4381.2016.001135

    XU S Y,TAN H C,GUAN Y P,et al. Predication and experimental verification on mechanical properties of three-dimensional and four-direction braided composites[J]. Journal of Materials Engineering,2018,46(6):132-140. doi: 10.11868/j.issn.1001-4381.2016.001135
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  7
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-02
  • 修回日期:  2023-05-16
  • 网络出版日期:  2023-10-18
  • 刊出日期:  2023-10-01

目录

    /

    返回文章
    返回

    《航空材料学报》关于谨防假冒期刊的郑重声明

    近期,有不法分子冒充《航空材料学报》期刊及官网,谎称提供论文发表服务,发布虚假约稿信息,骗取作者发表费用,为此,本编辑部郑重声明如下:

    1、http://www.hkclxb.cn 为假冒网站,与《航空材料学报》没有任何关系。我刊没有委托任何第三方机构或个人,代表我刊约稿或提供发表服务。

    2、《航空材料学报》为中文期刊,只接收中文文章投稿,目前不刊登英文文章。

    3. 本刊官网是http://jam.biam.ac.cn/,本刊的官方投稿方式为网上投稿(登录官网首页—作者投稿)。如有不明可电话咨询,联系电话是010-62496277。

    敬请广大读者和作者认真识别,谨防上当受骗。