High temperature oxidation microstructure analysis of Ni-based P/M superalloy coated with an inorganic aluminum coating
-
摘要: 使用TWL12+TWL20无机盐铝涂层喷涂于镍基粉末高温合金表面,采用XRD、SEM、EPMA和TEM研究无机盐铝涂层与粉末高温合金经700、750、800 ℃高温氧化后的组织变化。结果表明:高温氧化后涂层表层结构出现剥落,涂层中的铝与基体合金发生扩散,形成由氧化区、扩散区、互扩散区组成的过渡层,其中氧化区为最外层,该区域主要富集O、Al元素,形成Al2O3层;随之的扩散区主要含有Ni、Al元素,形成NiAl相及在其中弥散分布的α-Cr相;最后是富集Ti、Cr、Co、Ta等元素的互扩散区,存在于扩散区与基体之间,主要由Ni2AlTi相基体及在其中弥散分布的σ相组成;分析表明过渡层厚度随着氧化温度升高而变化,主要表现为互扩散区宽度增加,扩散区中的α-Cr相与互扩散区的σ相尺寸增大,且σ相沿垂直过渡区方向生长的趋势加剧;氧化增重曲线表明,涂层表层结构脱落后,过渡层在750、800 ℃高温氧化过程中表现出良好的抗氧化性能,说明TWL12+TWL20无机盐铝涂层具有为航空发动机用先进粉末高温合金提供高温氧化涂层保护的潜力。
-
关键词:
- TWL12+TWL20无机盐铝涂层 /
- 镍基粉末高温合金 /
- 高温氧化 /
- 显微组织
Abstract: In this paper, TWL12 + TWL20 inorganic salt aluminum coating was sprayed on the surface of Ni-based P/M superalloy. The microstructure changes of inorganic salt aluminum coating and P/M superalloy after high temperature oxidation at 700, 750 ℃ and 800 ℃ were studied by XRD, SEM, EPMA and TEM. The results show that after high temperature oxidation, the surface structure of the coating peels off, and the aluminum in the coating diffuses with the substrate to form a transition layer composed of oxidation zone, diffusion layer and interdiffusion zone. The oxidation zone is the outermost layer, where is mainly enriched with O and Al elements to form Al2O3 layer. The diffusion layer mainly contains Ni and Al elements, forming NiAl phase and α-Cr phase dispersed in it. Finally, the interdiffusion zone rich in Ti, Cr, Co, Ta and other elements exists between the diffusion zone and the matrix, which is mainly composed of Ni2AlTi phase matrix and σ phase dispersed in it. The analysis shows that the thickness of transition layer changes with the increase of oxidation temperature, it is mainly manifested by the increase of the width of the interdiffusion zone, the increase of the size of α-Cr phase in the diffusion layer and σ phase in the interdiffusion zone, and the growth trend of σ phase along the vertical transition zone is intensified. The oxidation weight gain curve shows that the transition layer exhibits good oxidation resistance during high temperature oxidation at 750 ℃ and 800 ℃ after the surface structure of the coating falls off, it indicates that the TWL12 + TWL20 inorganic salt aluminum coating has the potential to provide high temperature oxidation coating protection for advanced P/M superalloy used in aeroengines. -
图 6 大气环境中涂层在700 ℃下高温氧化100 h试样截面分析 (a)截面形貌;(b)EPMA元素分布;(c)图(a)中a1位置高倍形貌;(d)图(a)中a2位置高倍形貌
Figure 6. Cross section analysis of coating samples oxidized at 700 ℃ for 100h in air (a)cross section morphology;(b)EPMA element distribution;(c)high power morphology of a1 position in Fig.(a);(d)high power morphology of a2 position in Fig.(a)
图 8 大气环境中涂层在750 ℃下高温氧化100 h试样截面形貌 (a)截面形貌;(b)EPMA元素分布;(c)图(a)中a1位置高倍形貌;(d)图(a)中a2位置高倍形貌
Figure 8. Cross section analysis of coating samples oxidized at 750 ℃ for 100 h in air (a)cross section morphology;(b)EPMA element distribution;(c)high power morphology of a1 position in Fig(a);(d)high power morphology of a2 position in Fig(a)
图 9 大气环境中涂层在800 ℃下高温氧化100 h试样截面形貌 (a)截面形貌;(b)EPMA元素分布;(c)图(a)中a1位置高倍形貌;(d)图(a)中a2位置高倍形貌
Figure 9. Cross section analysis of coating samples oxidized at 800 ℃ for 100 h in air (a)cross section morphology;(b)EPMA element distribution;(c)high power morphology of a1 position in Fig(a);(d)high power morphology of a2 position in Fig(a)
表 1 镍基粉末高温合金主要成分(质量分数/%)
Table 1. Composition of a Ni-based P/M superalloy(mass fraction/%)
Cr Al Ti Co W Mo Nb Ta Other Ni 16-21 3-5 2-3 10-13 2-4 2-4 1-2 2-3 <0.5 Bal -
[1] 张国庆,张义文,郑亮,等. 航空发动机用粉末高温合金及制备技术研究进展[J]. 金属学报,2019,55(9):1133-1144. doi: 10.11900/0412.1961.2019.00119ZHANG G Q,ZHANG Y W,ZHENG L,et al. Research progress in powder metallurgy superalloys and manufacturing technologies for aero-engine application[J]. Acta Metallurgica Sinica,2019,55(9):1133-1144. doi: 10.11900/0412.1961.2019.00119 [2] KHANNA A S. High-temperature oxidation[M]//KUTZ M. Handbook of Environmental Degradation of Materials (Third Edition). [S. l. ]:William Andrew Publishing,2018:117-132. [3] BACHE M R,JONES J P,DREW G L,et al. Environment and time dependent effects on the fatigue response of an advanced nickel based superalloy[J]. International Journal of Fatigue,2009,31(11):1719-1723. [4] XU C,YAO Z H,DONG JX,et al. Mechanism of high-temperature oxidation effects in fatigue crack propagation and fracture mode for FGH97 superalloy[J]. Rare Metals,2019,38(7):642-652. doi: 10.1007/s12598-018-1123-x [5] MISRA A K,GREENBAUER-SENG L A. Aerospace propulsion and power materials and structures research at NASA Glenn Research Center[J]. Journal of Aerospace Engineering,2013,26(2):459-490. doi: 10.1061/(ASCE)AS.1943-5525.0000325 [6] 张光业,张华,张厚安,等. 航空用高温合金防护涂层的研制及其应用的新进展[J]. 材料导报,2006,20(5):59-62.ZHANG G Y,ZHANG H,ZHAGN H A,et al. Progress in preparation and application of corrosive resistance coating for Aerospace superalloys[J]. Materials Review,2006,20(5):59-62. [7] TEXIER D,MONCEAU D,CARBOS F,et al. Tensile properties of a non-line-of-sight processed β-γ-γ′ MCrAlY coating at high temperature [J]. Surface and Coatings Technology,2017,326:28-36. doi: 10.1016/j.surfcoat.2017.07.026 [8] 史学海,陈志宇,周斌,等. 无机磷酸盐耐高温涂料的防腐机理及研究进展[J]. 电镀与涂饰,2021,40(14):1110-1118.SHI X H,CHEN Z Y,ZHOU B,et al. Anticorrosion mechanism and research progress of high-temperature-resistant inorganic phosphate coatings[J]. Electroplating and Finishing,2021,40(14):1110-1118. [9] 杨宏波,刘朝辉,丁逸栋,等. 金属表面耐高温防腐涂料的研究进展[J]. 表面技术,2017,46(3):216-222.YANG H B,LIU Z H,DING Y D,et al. Research progress of high temperature resistant anticorrosive coatings on metal surface[J]. Surface Technology,2017,46(3):216-222. [10] 王巍,权崇仁. 某型燃机中温部件防护涂层性能研究[J]. 汽轮机技术,2014,56(6):475-477. doi: 10.3969/j.issn.1001-5884.2014.06.023WANG W,QUAN C R. Research of performances protective coating in a gas turbine[J]. Turbine Technology,2014,56(6):475-477. doi: 10.3969/j.issn.1001-5884.2014.06.023 [11] 费瑞梅,冯自修,郝杉杉,等. 高强度钢TEL-11涂层工艺的研究[J]. 材料工程,1994(4):29-32.FEI R M,FONG Z X,HAO S S,et al. Study on process TWL-11 coating system for high strength steel[J]. Journal of Materials Engineering,1994(4):29-32. [12] 张鹏飞,杨瑞,原玲,等. 无机盐铝涂料及其性能研究[J]. 涂料工业,2013,43(8):69-73. doi: 10.3969/j.issn.0253-4312.2013.08.014ZHANG P F,YANG R,YUAN L,et al. Study on properties of inorganic aluminum coating[J]. Paint and Coatings Industry,2013,43(8):69-73. doi: 10.3969/j.issn.0253-4312.2013.08.014 [13] PEDRAZA F,MOLLARD M,RANNOU B,et al. Oxidation resistance of thermal barrier coatings based on hollow alumina particles[J]. Oxidation of Metals,2016,85(3):231-244. [14] GOWARD G W. Current research on the surface protection of superalloys for gas turbine engines[J]. JOM,1970,22(10):31-39. doi: 10.1007/BF03355665 [15] MONTERO X,GALETZ M C,SCHüTZE M. Low-activity aluminide coatings for superalloys using a slurry process free of halide activators and chromates [J]. Surface and Coatings Technology,2013,222:9-14. doi: 10.1016/j.surfcoat.2013.01.033 -