碳含量对PIP-RMI工艺制备SiCnf/SiC复合材料力学性能的影响

朱明明 易舒政 陈建军

朱明明,易舒政,陈建军. 碳含量对PIP-RMI工艺制备SiCnf/SiC复合材料力学性能的影响[J]. 航空材料学报,2023,43(6):98-106 doi: 10.11868/j.issn.1005-5053.2023.000022
引用本文: 朱明明,易舒政,陈建军. 碳含量对PIP-RMI工艺制备SiCnf/SiC复合材料力学性能的影响[J]. 航空材料学报,2023,43(6):98-106 doi: 10.11868/j.issn.1005-5053.2023.000022
ZHU Mingming,YI Shuzheng,CHEN Jianjun. Effect of carbon content on mechanical properties of SiCnf/SiC composites prepared by PIP-RMI[J]. Journal of Aeronautical Materials,2023,43(6):98-106 doi: 10.11868/j.issn.1005-5053.2023.000022
Citation: ZHU Mingming,YI Shuzheng,CHEN Jianjun. Effect of carbon content on mechanical properties of SiCnf/SiC composites prepared by PIP-RMI[J]. Journal of Aeronautical Materials,2023,43(6):98-106 doi: 10.11868/j.issn.1005-5053.2023.000022

碳含量对PIP-RMI工艺制备SiCnf/SiC复合材料力学性能的影响

doi: 10.11868/j.issn.1005-5053.2023.000022
详细信息
    通讯作者:

    陈建军(1974—),男,博士,教授/博导,主要研究陶瓷基复合材料及陶瓷纤维,联系地址:浙江省杭州市钱塘区下沙高教园区2号大街928号浙江理工大学(310018),E-mail:chen@zstu.edu.cn

  • 中图分类号: TB332

Effect of carbon content on mechanical properties of SiCnf/SiC composites prepared by PIP-RMI

  • 摘要: 采用前驱体浸渍裂解(polymer infiltration and pyrolysis,PIP)工艺结合反应熔渗(reactive melt infiltration,RMI)工艺制备氮化硼(BN)包覆SiC纳米纤维(SiCnf)增强SiC复合材料。首先以BCl3和NH3为反应气源,采用化学气相沉积(chemical vapor deposition,CVD)工艺在SiCnf表面制备h-BN界面,再以聚碳硅烷为前驱体,采用PIP工艺制备出SiCnf/SiC多孔陶瓷,并采用酚醛树脂浸渍多孔陶瓷,经裂解获得填充碳,最后采用RMI工艺进行致密化,温度为1500 ℃,保温2 h。研究CVD工艺的沉积温度对h-BN微观形貌的影响和碳含量对复合材料力学性能的影响。使用X射线衍射仪、傅里叶变换红外光谱仪、场发射扫描电镜和万能试验机对制备的样品进行表征。结果表明:在750、850℃和950 ℃三种温度下均可制备出h-BN,随着温度的升高,沉积的h-BN界面变得光滑、致密;随着碳含量的增加,SiCnf/SiC复合材料的力学性能随之提高,当碳质量分数为19.24%时,复合材料的抗弯强度和断裂韧度最大,分别为207 MPa和8.63 MPa·m1/2

     

  • 图  1  SiCnf经过950 ℃沉积处理后的XRD图谱

    Figure  1.  XRD pattern of SiCnf after deposition at 950 ℃

    图  2  不同沉积温度下的SiCnf的FT-IR图谱

    Figure  2.  FT-IR patterns of SiCnf at different deposition temperatures

    图  3  SiCnf和沉积BN界面的SiCnf的微观形貌和EDS结果 (a)SiCnf;(b)沉积BN界面的SiCnf;(c)EDS

    Figure  3.  Microstructures and EDS results of SiCnf and SiCnf with deposited BN interface (a)SiCnf;(b)SiCnf with deposited BN interface;(c)EDS

    图  4  不同温度下制备的BN界面层的微观结构 (a)750 ℃;(b)和(c)850 ℃;(d)950 ℃

    Figure  4.  Microstructures of BN interfacial layers prepared under different temperatures  (a)750 ℃;(b)and(c)850 ℃;(d)950 ℃

    图  5  碳含量随酚醛树脂浸渍裂解次数的变化曲线

    Figure  5.  Variation curve of carbon content with times of impregnation pyrolysis of phenolic resin

    图  6  SiCnf/SiC复合材料的密度随碳含量的变化曲线

    Figure  6.  Density of SiCnf/SiC composite material varies with carbon content

    图  7  不同碳含量的SiCnf/SiC复合材料的XRD衍射图

    Figure  7.  XRD patterns of SiCnf/SiC composites with different carbon contents

    图  8  SiCnf/SiC复合材料的弯曲强度和断裂韧度随碳含量的变化曲线

    Figure  8.  Curves of flexural strength and fracture toughness of SiCnf/SiC composites with carbon content

    图  9  不同碳含量的SiCnf/SiC复合材料的金相图 (a)12.4%;(b)15.3%;(c)18.82%;(d)19.24%

    Figure  9.  Metallographic diagrams of SiCnf/SiC composites with different carbon contents  (a)12.4%;(b)15.3%;(c)18.82%;(d)19.24%

    图  10  不同碳含量的SiCnf/SiC复合材料的SEM图 (a)12.4%;(b)15.3%;(c)18.82%;(d)19.24%

    Figure  10.  SEM images of SiCnf/SiC composites with different carbon contents  (a)12.4%;(b)15.3%;(c)18.82%;(d)19.24%

    图  11  SiCnf/SiC复合材料的增韧机理 (a)纤维桥接和裂纹偏转;(b)纤维拔出

    Figure  11.  Toughening mechanism of SiCnf/SiC composites  (a)fiber bridging and crack deflection;(b)fiber pull-out

  • [1] CHO T Y,KIM Y W,KIM K J. Thermal,electrical,and mechanical properties of pressureless sintered silicon carbide ceramics with yttria-scandia-aluminum nitride[J]. Journal of the European Ceramic Society,2016,36(11):2659-2665. doi: 10.1016/j.jeurceramsoc.2016.04.014
    [2] 刘虎,杨金华,焦健. 航空发动机用连续SiCf/SiC复合材料制备工艺及应用前景[J]. 航空制造技术,2017,16:90-95.

    LIU H,YANG J H,JIAO J. Fabrication technique and application prospect of continuous SiC fiber reinforced ceramic matrix composites for aeroengine[J]. Aeronautical Manufacturing Technology,2017,16:90-95.
    [3] KOYANAGI T,TERRANI K,HARRISON S,et al. Additive manufacturing of silicon carbide for nuclear applications[J]. Journal of Nuclear Materials,2021,543:152577. doi: 10.1016/j.jnucmat.2020.152577
    [4] 焦浩文,陈冰,左彬. C/SiC复合材料的制备及加工技术研究进展[J]. 航空材料学报,2021,41(1):19-34.

    JIAO H W,CHEN B,ZUO B. Research progress in preparation and processing technology of C/SiC composites[J]. Journal of Aeronautical Materials,41(1):19-34.
    [5] 姜卓钰,吕晓旭,周怡然,等. PIP工艺制备SiC晶须增强SiCf/SiC复合材料的性能[J]. 航空材料学报,2021,41(2):82-88.

    JIANG Z Y,LV X X,ZHOU Y R,et al. Performance of SiC whisker reinforced SiCf/SiC composites fabricated by PIP[J]. Journal of Aeronautical Materials,2021,41(2):82-88.
    [6] 高晔,姜卓钰,周怡然,等. 正交铺层PIP-SiCf/SiC复合材料的水淬失效行为[J]. 材料工程,2022,50(3):166-172.

    GAO Y,JIANG Z Y,ZHOU Y R,et al. Water quenching failure behavior of orthogonal laminated PIP-SiCf/SiC composites[J]. Journal of Materials Engineering,2022,50(3):166-172.
    [7] 李丽丽,XIA Zhen-Hai,杨延清,等. SiC纳米纤维/C/SiC复合材料拉伸行为的分子动力学研究[J]. 物理学报,2015,64(11):117101. doi: 10.7498/aps.64.117101

    LI L,XIA Z H,YANG Y Q,et al. Molecular dynamics study on tensile behavior of SiC nanofiber/C/SiC nanocomposites[J]. Acta Physica Sinica,2015,64(11):117101. doi: 10.7498/aps.64.117101
    [8] ZHAO K,LI K,WANG Y. Rapid densification of C/SiC composite by incorporating SiC nanowires[J]. Composites Part B,2013,45(1):1583-1586. doi: 10.1016/j.compositesb.2012.08.018
    [9] 孔文龙,傅肃嘉,刘东旭,等. SiC纳米纤维增强碳化硅陶瓷的性能[J]. 浙江理工大学学报(自然科学版),2019,41:421-426.

    KONG W L,FU S J,LIU D X,et al. Properties of silicon carbide ceramics reinforced by SiC nanofibers[J]. Journal of Zhejiang Sci-Tech University(Natural Sciences Edition),2019,41:421-426.
    [10] LIU R,WANG F,ZHANG J,et al. Effects of CVI SiC amount and deposition rates on properties of SiCf/SiC composites fabricated by hybrid chemical vapor infiltration(CVI)and precursor infiltration and pyrolysis (PIP) routes[J]. Ceramics International,2021,47(19):26971-26977. doi: 10.1016/j.ceramint.2021.06.110
    [11] LIANG J,XIAO H,GAO P,et al. Microstructure and properties of 2D-Cf/SiC composite fabricated by combination of CVI and PIP process with SiC particle as inert fillers[J]. Ceramics International,2017,43(2):1788-1794. doi: 10.1016/j.ceramint.2016.10.134
    [12] LU Z L,YUE J L,FU Z Y,et al. Microstructure and mechanical performance of SiCf/BN/SiC mini-composites oxidized at elevated temperature from ambient temperature to 1500 ℃ in air[J]. Journal of the European Ceramic Society,2020,40(8):2821-2827. doi: 10.1016/j.jeurceramsoc.2019.04.013
    [13] WANG M Q,JIA L T,XU H M,et al. Influence of pressure on chemical vapor deposition of boron nitride from BCl3/NH3/H2 gas mixtures[J]. Ceramics International,2020,46(4):4843-4849. doi: 10.1016/j.ceramint.2019.10.218
    [14] TANG C,BANDO Y,GOLBERG D. Large-scale synthesis and structure of boron nitride sub-micron spherical particles[J]. Chemical Communications,2002(23):2826-2827. doi: 10.1039/b208785e
    [15] ZHENG M,GU Y,XU Z,et al. Synthesis and characterization of boron nitride nanoropes[J]. Materials Letters,2007,61(8/9):1943-1945.
    [16] HUANG Q W,ZHU L H. High-temperature strength and toughness behaviors for reaction-bonded SiC ceramics below 1400 ℃[J]. Materials Letters,2005,59(14/15):1732-1735.
    [17] JIANG Y,NI D,CHEN B,et al. Fabrication and optimization of 3D-Cf/HfC-SiC-based composites via sol-gel processing and reactive melt infiltration[J]. Journal of the European Ceramic Society,2021,41(3):1788-1794. doi: 10.1016/j.jeurceramsoc.2020.10.053
    [18] 崔聪聪,李珊,李伟,等. 立体光固化3D打印成型碳化硅陶瓷的烧结特性[J]. 硅酸盐通报,2021,40:1937-1942.

    CUI C C,LI S,LI W,et al. Sintering characteristics of SiC ceramics prepared by stereolithography 3D printing [J]. Bulletin of the Chinese Ceramic Society,2021,40:1937-1942.
    [19] ZHANG Y,HAN X,ZHENG K,et al. Direct observation of super-plasticity of beta-SiC nanowires at low temperature[J]. Advanced Functional Materials,2007,17(17):3435-3440. doi: 10.1002/adfm.200700162
  • 加载中
图(11)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  23
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-06
  • 修回日期:  2023-08-01
  • 刊出日期:  2023-12-08

目录

    /

    返回文章
    返回

    《航空材料学报》关于谨防假冒期刊的郑重声明

    近期,有不法分子冒充《航空材料学报》期刊及官网,谎称提供论文发表服务,发布虚假约稿信息,骗取作者发表费用,为此,本编辑部郑重声明如下:

    1、http://www.hkclxb.cn 为假冒网站,与《航空材料学报》没有任何关系。我刊没有委托任何第三方机构或个人,代表我刊约稿或提供发表服务。

    2、《航空材料学报》为中文期刊,只接收中文文章投稿,目前不刊登英文文章。

    3. 本刊官网是http://jam.biam.ac.cn/,本刊的官方投稿方式为网上投稿(登录官网首页—作者投稿)。如有不明可电话咨询,联系电话是010-62496277。

    敬请广大读者和作者认真识别,谨防上当受骗。