Acoustic emission study on tensile damage and failure behavior of fibre-reinforced aluminum alloy laminates with hole
-
摘要: 采用声发射技术(AE)和数字图像相关技术(DIC)相结合的方法对含孔GLARE层板的静载轴向拉伸损伤过程进行实时监测,研究开孔尺寸对其力学行为及失效机理的影响。基于k均值(k-means)方法确定不同损伤模式的峰值频率(PF)范围,并结合幅值(PA)、能量(E)以及累计撞击数等AE特征参数分析含孔GLARE层板的拉伸失效机理。结果表明:GLARE层板在整个拉伸过程中主要存在四种损伤模式,即金属层板损伤、基体开裂、纤维剥离与分层损伤和纤维断裂;四种损伤模式的发生在时间上具有时序性;开孔尺寸对GLARE的承载能力具有显著影响;随着孔径的增大,试样在失效阶段末期由突然断裂变为延性断裂。Abstract: Real-time monitoring of the axial tensile damage process of GLARE laminates with hole was carried out by combining acoustic emission(AE)technology and digital image correlation(DIC)technology. The effect of hole size on the mechanical behavior and failure mechanism was further analyzed. The peak frequency(PF)range of different damage modes was determined based on the k-means method, and the characteristics of AE parameters such as amplitude(PA), energy(E), and cumulative impact number were used to clarify the tensile failure mechanism of GLARE laminates with hole. The results show that there were mainly four damage modes during the entire tensile process of GLARE laminates, namely metal layer damage, matrix cracking, fiber debonding and interface delamination, and fiber fracture. The occurrence of the four damage modes is sequential in time. The size of the hole had a significant impact on the bearing capacity of GLARE, and as the aperture increased, the specimen changed from sudden fracture to ductile fracture at the end of the failure stage.
-
Key words:
- GLARE laminates /
- AE technology /
- DIC method /
- cluster analysis /
- failure mechanism
-
图 4 不同孔径试件拉伸载荷和相对能量随时间变化曲线及各阶段拉伸方向应变
$ {\varepsilon _{{\text{yy}}}} $ 的DIC云图 (a)0-90-3;(b)0-90-5;(c)0-90-7;(d)0-90-9;(1)能量载荷随时间变化关系;(2)拉伸方向应变$ {\varepsilon _{{\text{yy}}}} $ 的DIC云图Figure 4. Tension load and relative energy versus time curve and DIC cloud map of tensile directional strain
${\varepsilon _{{\text{yy}}}}$ in each stage (a)0-90-3;(b)0-90-5;(c)0-90-7;(d)0-90-9;(1)relative energy and tensile load versus time;(2)DIC cloud map of tensile directional strain${\varepsilon _{{\text{yy}}}}$ 表 1 不同孔径GLARE试件AE信号的聚类边界与数量
Table 1. Cluster bounds and number of AE signals for GLARE specimens with different apertures
Specimen Cluster PA/ dB PF/ kHz Number 0-90-3 CL1 1-33.64 11.72-48.32 95 CL2 1-99.90 93.75-199.22 9611 CL3 1-19.19 210.94-281.25 1045 CL4 1-6.25 328.13-398.44 90 0-90-5 CL1 1-37.30 11.72-46.88 117 CL2 1-93.12 82.03-199.22 9070 CL3 1-6.20 257.8-281.25 134 CL4 1-2.01 328.13-375.00 24 0-90-7 CL1 1-14.26 11.72-46.88 28 CL2 1-99.90 93.75-199.22 9609 CL3 1-14.16 210.94-281.25 276 CL4 1-7.18 304.69-398.44 45 0-90-9 CL1 1-36.87 11.72-50.54 319 CL2 1-99.90 82.03-199.22 6005 CL3 1-19.92 210.94-298.83 720 CL4 1-8.35 328.13-398.44 119 -
[1] SINMAZCELIK T,AVCU E,BORA M Ö,et al. A review:fiber metal laminates,background,bonding types and applied test methods[J]. Materials & Design,2011,32(7):3671-3685. [2] 郑吉良,孙勇,彭明军. 单向玻璃纤维增强树脂基体复合材料拉伸失效机理[J]. 航空材料学报,2015,35(4):45-54. doi: 10.11868/j.issn.1005-5053.2015.4.008ZHENG J L,SUN Y,PENG M J. Tensile failure mechanism for resin matrix composites reinforced by unidirectional glass fiber[J]. Journal of Aeronautical Materials,2015,35(4):45-54. doi: 10.11868/j.issn.1005-5053.2015.4.008 [3] ALI A,PAN L,DUAN L,et al. Characterization of seawater hygrothermal conditioning effects on the properties of titanium-based fiber-metal laminates for marine applications[J]. Composite Structures,2016,158:199-207. doi: 10.1016/j.compstruct.2016.09.037 [4] HE W,WANG C,WANG S,et al. Characterizing and predicting the tensile mechanical behavior and failure mechanisms of notched FMLs-combined with DIC and numerical techniques[J]. Composite Structures,2020,254:112893. doi: 10.1016/j.compstruct.2020.112893 [5] WANG H,LI H,XU Y,et al. Effects of thermal residual stresses on tensile and interlaminar shear behaviors of GLARE laminates[J]. Applied Composite Materials,2021,28:877-898. doi: 10.1007/s10443-021-09902-1 [6] DAHSHAN B,EL-HABBAK A H M,ADLY M A,et al. Experimental and numerical study on the tensile,three-point-bending,and interlaminar fracture toughness of GLARE[J]. Journal of Mechanical Science and Technology,2020,34:3273-3281. doi: 10.1007/s12206-020-0719-x [7] XIE B,GAO L,JIANG S,et al. Notched tensile response and damage mechanism of the GLARE laminate[J]. Journal of Composite Materials,2020,54(22):3037-3046. doi: 10.1177/0021998320907963 [8] HE W,WANG C,WANG S,et al. Tensile mechanical behavior and failure mechanisms of multi-hole fiber metal laminates-experimental characterization and numerical prediction[J]. Journal of Reinforced Plastics and Composites,2020,39(13/14):499-519. [9] 卢博远. 基于声发射和数字图像相关方法编织复合材料损伤破坏研究[D]. 保定:河北大学,2017.LU B Y. Study on damage of braided composite by acoustic emission and digital image correlation method[D]. Baoding:Hebei University,2017. [10] 张燕南,周伟,商雅静,等. 三维编织复合材料拉伸微变形的测量与损伤破坏声发射监测[J]. 纺织学报,2019,40(8):55-63. doi: 10.13475/j.fzxb.20180506809ZHANG Y N,ZHOU W,SHANG Y J,et al. Damage evolution and statistical characteristics analysis of acoustic emission signals for carbon fiber three dimensional braided composites[J]. Journal of Textile Research,2019,40(8):55-63. doi: 10.13475/j.fzxb.20180506809 [11] TU J,ZHAO D ,ZHAO J ,et al. Experimental study on crack initiation and propagation of wood with LT-type crack using digital image correlation (DIC) technique and acoustic emission (AE)[J]. Wood Science and Technology,2021(6):55. [12] 赵文政,李敏,张燕南,等. 复合材料损伤过程声发射信号聚类分析与压缩变形测量[J]. 玻璃钢/复合材料,2018 ,(6):5-10.ZHAO W Z,LI M,ZHANG Y N,et al. Cluster analysis of AE signals during damage process and compressive deformation of composite materials[J]. Fiber Reinforced Plastics/Composites,2018 ,(6):5-10. [13] MONTI A,EL M A,JENDLI Z,et al. Mechanical behaviour and damage mechanisms analysis of a flax-fibre reinforced composite by acoustic emission[J]. Composites Part A,2016,90:100-110. doi: 10.1016/j.compositesa.2016.07.002 [14] 谢波涛,高亮,江帅,等. 含孔玻璃纤维/环氧树脂复合材料-铝合金层板的拉伸损伤行为与热暴露响应[J]. 复合材料学报,2020,37(11):2798-2806. doi: 10.13801/j.cnki.fhclxb.20200211.001XIE B T,GAO L,JIANG S,et al. Tensile damage behavior and thermal exposure response of glass fiber/epoxy composite-aluminum alloy laminates with an open-hole[J]. Acta Materiae Compositae Sinica,2020,37(11):2798-2806. doi: 10.13801/j.cnki.fhclxb.20200211.001 -