含孔纤维增强铝合金层板拉伸损伤失效行为的声发射分析

郑颖骁 张劢 胡可军 段刘阳 韩文钦 石庆贺 朱福先

郑颖骁, 张劢, 胡可军, 段刘阳, 韩文钦, 石庆贺, 朱福先. 含孔纤维增强铝合金层板拉伸损伤失效行为的声发射分析[J]. 航空材料学报, 2023, 43(5): 97-105. doi: 10.11868/j.issn.1005-5053.2023.000027
引用本文: 郑颖骁, 张劢, 胡可军, 段刘阳, 韩文钦, 石庆贺, 朱福先. 含孔纤维增强铝合金层板拉伸损伤失效行为的声发射分析[J]. 航空材料学报, 2023, 43(5): 97-105. doi: 10.11868/j.issn.1005-5053.2023.000027
ZHENG Yingxiao, ZHANG Mai, HU Kejun, DUAN Liuyang, HAN Wenqin, SHI Qinghe, ZHU Fuxian. Acoustic emission study on tensile damage and failure behavior of fibre-reinforced aluminum alloy laminates with hole[J]. Journal of Aeronautical Materials, 2023, 43(5): 97-105. doi: 10.11868/j.issn.1005-5053.2023.000027
Citation: ZHENG Yingxiao, ZHANG Mai, HU Kejun, DUAN Liuyang, HAN Wenqin, SHI Qinghe, ZHU Fuxian. Acoustic emission study on tensile damage and failure behavior of fibre-reinforced aluminum alloy laminates with hole[J]. Journal of Aeronautical Materials, 2023, 43(5): 97-105. doi: 10.11868/j.issn.1005-5053.2023.000027

含孔纤维增强铝合金层板拉伸损伤失效行为的声发射分析

doi: 10.11868/j.issn.1005-5053.2023.000027
基金项目: 国家自然科学基金(52205157, 12102156)
详细信息
    通讯作者:

    胡可军(1988—),男,博士,主要从事复合材料的损伤监测与仿真分析,联系地址:江苏省常州市中吴大道1801号(213001),E-mail: kejun@jsut.edu.cn

  • 中图分类号: TB332

Acoustic emission study on tensile damage and failure behavior of fibre-reinforced aluminum alloy laminates with hole

  • 摘要: 采用声发射技术(AE)和数字图像相关技术(DIC)相结合的方法对含孔GLARE层板的静载轴向拉伸损伤过程进行实时监测,研究开孔尺寸对其力学行为及失效机理的影响。基于k均值(k-means)方法确定不同损伤模式的峰值频率(PF)范围,并结合幅值(PA)、能量(E)以及累计撞击数等AE特征参数分析含孔GLARE层板的拉伸失效机理。结果表明:GLARE层板在整个拉伸过程中主要存在四种损伤模式,即金属层板损伤、基体开裂、纤维剥离与分层损伤和纤维断裂;四种损伤模式的发生在时间上具有时序性;开孔尺寸对GLARE的承载能力具有显著影响;随着孔径的增大,试样在失效阶段末期由突然断裂变为延性断裂。

     

  • 图  1  GLARE-3/2试样示意图

    Figure  1.  Schematic diagram of GLARE-3/2 specimen

    图  2  不同孔径GLARE层板试件的幅值与峰值频率聚类关系 (a)0-90-3;(b)0-90-5;(c)0-90-7;(d)0-90-9

    Figure  2.  Clustering relationship between amplitude and peak frequency of GLARE laminates with different apertures (a)0-90-3;(b)0-90-5;(c)0-90-7;(d)0-90-9

    图  3  不同孔径GLARE层板试件的幅值与峰值频率聚类关系 (a)0-90-3;(b)0-90-5;(c)0-90-7;(d)0-90-9

    Figure  3.  Clustering relationship between amplitude and peak frequency of GLARE laminates with different apertures (a)0-90-3;(b)0-90-5;(c)0-90-7;(d)0-90-9

    图  4  不同孔径试件拉伸载荷和相对能量随时间变化曲线及各阶段拉伸方向应变$ {\varepsilon _{{\text{yy}}}} $的DIC云图 (a)0-90-3;(b)0-90-5;(c)0-90-7;(d)0-90-9;(1)能量载荷随时间变化关系;(2)拉伸方向应变$ {\varepsilon _{{\text{yy}}}} $的DIC云图

    Figure  4.  Tension load and relative energy versus time curve and DIC cloud map of tensile directional strain ${\varepsilon _{{\text{yy}}}}$ in each stage (a)0-90-3;(b)0-90-5;(c)0-90-7;(d)0-90-9;(1)relative energy and tensile load versus time;(2)DIC cloud map of tensile directional strain${\varepsilon _{{\text{yy}}}}$

    图  5  0-90-5试样拉伸载荷、撞击累计数及幅值与时间关系

    Figure  5.  Relationship curves of tension load, impact cumulative count and amplitude vs time for 0-90-5 specimen

    图  6  不同孔径试件拉伸载荷和峰值频率与时间关系曲线 (a)0-90-3;(b)0-90-5;(c)0-90-7;(d)0-90-9

    Figure  6.  Relationship curves of tension load and peak frequency versus time for specimens with different aperture diameters (a)0-90-3;(b)0-90-5;(c)0-90-7;(d)0-90-9

    图  7  0-90-5试样拉伸端口宏观形貌和微观形貌  (a)拉伸端口宏观正体和局部形貌;(b)断口侧视微观形貌;(c)图(b)局部放大图

    Figure  7.  Macro- and micromorphologies of tensile fracture of 0-90-5 specimen  (a)overall and local macromorphologies;(b)micromorphologies of tensile frature;(c)local magnification of Fig (b)

    图  8  不同孔径GLARE层板试样载荷-位移曲线及断裂强度曲线图

    Figure  8.  Load-displacement curve and ultimate strength curve of GLARE laminates with different apertures

    表  1  不同孔径GLARE试件AE信号的聚类边界与数量

    Table  1.   Cluster bounds and number of AE signals for GLARE specimens with different apertures

    Specimen Cluster PA/ dB PF/ kHz Number
    0-90-3 CL1 1-33.64 11.72-48.32 95
    CL2 1-99.90 93.75-199.22 9611
    CL3 1-19.19 210.94-281.25 1045
    CL4 1-6.25 328.13-398.44 90
    0-90-5 CL1 1-37.30 11.72-46.88 117
    CL2 1-93.12 82.03-199.22 9070
    CL3 1-6.20 257.8-281.25 134
    CL4 1-2.01 328.13-375.00 24
    0-90-7 CL1 1-14.26 11.72-46.88 28
    CL2 1-99.90 93.75-199.22 9609
    CL3 1-14.16 210.94-281.25 276
    CL4 1-7.18 304.69-398.44 45
    0-90-9 CL1 1-36.87 11.72-50.54 319
    CL2 1-99.90 82.03-199.22 6005
    CL3 1-19.92 210.94-298.83 720
    CL4 1-8.35 328.13-398.44 119
    下载: 导出CSV
  • [1] SINMAZCELIK T,AVCU E,BORA M Ö,et al. A review:fiber metal laminates,background,bonding types and applied test methods[J]. Materials & Design,2011,32(7):3671-3685.
    [2] 郑吉良,孙勇,彭明军. 单向玻璃纤维增强树脂基体复合材料拉伸失效机理[J]. 航空材料学报,2015,35(4):45-54. doi: 10.11868/j.issn.1005-5053.2015.4.008

    ZHENG J L,SUN Y,PENG M J. Tensile failure mechanism for resin matrix composites reinforced by unidirectional glass fiber[J]. Journal of Aeronautical Materials,2015,35(4):45-54. doi: 10.11868/j.issn.1005-5053.2015.4.008
    [3] ALI A,PAN L,DUAN L,et al. Characterization of seawater hygrothermal conditioning effects on the properties of titanium-based fiber-metal laminates for marine applications[J]. Composite Structures,2016,158:199-207. doi: 10.1016/j.compstruct.2016.09.037
    [4] HE W,WANG C,WANG S,et al. Characterizing and predicting the tensile mechanical behavior and failure mechanisms of notched FMLs-combined with DIC and numerical techniques[J]. Composite Structures,2020,254:112893. doi: 10.1016/j.compstruct.2020.112893
    [5] WANG H,LI H,XU Y,et al. Effects of thermal residual stresses on tensile and interlaminar shear behaviors of GLARE laminates[J]. Applied Composite Materials,2021,28:877-898. doi: 10.1007/s10443-021-09902-1
    [6] DAHSHAN B,EL-HABBAK A H M,ADLY M A,et al. Experimental and numerical study on the tensile,three-point-bending,and interlaminar fracture toughness of GLARE[J]. Journal of Mechanical Science and Technology,2020,34:3273-3281. doi: 10.1007/s12206-020-0719-x
    [7] XIE B,GAO L,JIANG S,et al. Notched tensile response and damage mechanism of the GLARE laminate[J]. Journal of Composite Materials,2020,54(22):3037-3046. doi: 10.1177/0021998320907963
    [8] HE W,WANG C,WANG S,et al. Tensile mechanical behavior and failure mechanisms of multi-hole fiber metal laminates-experimental characterization and numerical prediction[J]. Journal of Reinforced Plastics and Composites,2020,39(13/14):499-519.
    [9] 卢博远. 基于声发射和数字图像相关方法编织复合材料损伤破坏研究[D]. 保定:河北大学,2017.

    LU B Y. Study on damage of braided composite by acoustic emission and digital image correlation method[D]. Baoding:Hebei University,2017.
    [10] 张燕南,周伟,商雅静,等. 三维编织复合材料拉伸微变形的测量与损伤破坏声发射监测[J]. 纺织学报,2019,40(8):55-63. doi: 10.13475/j.fzxb.20180506809

    ZHANG Y N,ZHOU W,SHANG Y J,et al. Damage evolution and statistical characteristics analysis of acoustic emission signals for carbon fiber three dimensional braided composites[J]. Journal of Textile Research,2019,40(8):55-63. doi: 10.13475/j.fzxb.20180506809
    [11] TU J,ZHAO D ,ZHAO J ,et al. Experimental study on crack initiation and propagation of wood with LT-type crack using digital image correlation (DIC) technique and acoustic emission (AE)[J]. Wood Science and Technology,2021(6):55.
    [12] 赵文政,李敏,张燕南,等. 复合材料损伤过程声发射信号聚类分析与压缩变形测量[J]. 玻璃钢/复合材料,2018 ,(6):5-10.

    ZHAO W Z,LI M,ZHANG Y N,et al. Cluster analysis of AE signals during damage process and compressive deformation of composite materials[J]. Fiber Reinforced Plastics/Composites,2018 ,(6):5-10.
    [13] MONTI A,EL M A,JENDLI Z,et al. Mechanical behaviour and damage mechanisms analysis of a flax-fibre reinforced composite by acoustic emission[J]. Composites Part A,2016,90:100-110. doi: 10.1016/j.compositesa.2016.07.002
    [14] 谢波涛,高亮,江帅,等. 含孔玻璃纤维/环氧树脂复合材料-铝合金层板的拉伸损伤行为与热暴露响应[J]. 复合材料学报,2020,37(11):2798-2806. doi: 10.13801/j.cnki.fhclxb.20200211.001

    XIE B T,GAO L,JIANG S,et al. Tensile damage behavior and thermal exposure response of glass fiber/epoxy composite-aluminum alloy laminates with an open-hole[J]. Acta Materiae Compositae Sinica,2020,37(11):2798-2806. doi: 10.13801/j.cnki.fhclxb.20200211.001
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  6
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-10
  • 录用日期:  2023-08-08
  • 修回日期:  2023-07-16
  • 网络出版日期:  2023-10-18
  • 刊出日期:  2023-10-01

目录

    /

    返回文章
    返回

    《航空材料学报》关于谨防假冒期刊的郑重声明

    近期,有不法分子冒充《航空材料学报》期刊及官网,谎称提供论文发表服务,发布虚假约稿信息,骗取作者发表费用,为此,本编辑部郑重声明如下:

    1、http://www.hkclxb.cn 为假冒网站,与《航空材料学报》没有任何关系。我刊没有委托任何第三方机构或个人,代表我刊约稿或提供发表服务。

    2、《航空材料学报》为中文期刊,只接收中文文章投稿,目前不刊登英文文章。

    3. 本刊官网是http://jam.biam.ac.cn/,本刊的官方投稿方式为网上投稿(登录官网首页—作者投稿)。如有不明可电话咨询,联系电话是010-62496277。

    敬请广大读者和作者认真识别,谨防上当受骗。