包覆氧化镁碳纳米管增强AZ91复合材料摩擦磨损性能

袁秋红 周国华 廖琳 王槟 张磊 肖汕

袁秋红, 周国华, 廖琳, 王槟, 张磊, 肖汕. 包覆氧化镁碳纳米管增强AZ91复合材料摩擦磨损性能[J]. 航空材料学报, 2023, 43(5): 29-38. doi: 10.11868/j.issn.1005-5053.2023.000040
引用本文: 袁秋红, 周国华, 廖琳, 王槟, 张磊, 肖汕. 包覆氧化镁碳纳米管增强AZ91复合材料摩擦磨损性能[J]. 航空材料学报, 2023, 43(5): 29-38. doi: 10.11868/j.issn.1005-5053.2023.000040
YUAN Qiuhong, ZHOU Guohua, LIAO Lin, WANG Bin, ZHANG Lei, XIAO Shan. Friction and wear properties of AZ91 alloy reinforced by CNTs coated with MgO[J]. Journal of Aeronautical Materials, 2023, 43(5): 29-38. doi: 10.11868/j.issn.1005-5053.2023.000040
Citation: YUAN Qiuhong, ZHOU Guohua, LIAO Lin, WANG Bin, ZHANG Lei, XIAO Shan. Friction and wear properties of AZ91 alloy reinforced by CNTs coated with MgO[J]. Journal of Aeronautical Materials, 2023, 43(5): 29-38. doi: 10.11868/j.issn.1005-5053.2023.000040

包覆氧化镁碳纳米管增强AZ91复合材料摩擦磨损性能

doi: 10.11868/j.issn.1005-5053.2023.000040
基金项目: 国家自然科学基金(52061039,52361027);江西省自然科学基金重点项目(20232ACB204006);江西省高层次高技能领军人才培养工程项目(3350222001)
详细信息
    通讯作者:

    袁秋红(1981—),男,博士,副教授,研究方向为镁/铝基复合材料,联系地址:江西省宜春市学府路576号(336000),E-mail:yuanqiuhong2@126.com

    周国华(1976—),男,博士,教授,研究方向为镁基复合材料,联系地址:江西省宜春市学府路576号(336000),E-mail:zgh7605@163.com

  • 中图分类号: TG146.2+2;TB333

Friction and wear properties of AZ91 alloy reinforced by CNTs coated with MgO

  • 摘要: 采用粉末冶金+热挤压成形+T4热处理工艺制备包覆氧化镁碳纳米管(MgO coated CNTs, MgO@CNTs)增强的AZ91镁合金复合材料(AZ91-MgO@CNTs),研究干滑动摩擦条件下MgO@CNTs含量、不同载荷对AZ91-MgO@CNTs磨损面形貌、磨屑形貌和耐磨性能的影响。结果表明:MgO@CNTs能显著提高AZ91-MgO@CNTs的摩擦磨损性能,且随着MgO@CNTs含量的增加,对复合材料耐磨性能的增强效果呈现先增大后下降的趋势;与纯CNTs增强的镁合金复合材料(AZ91-CNTs)相比,AZ91-MgO@CNTs具有更小的摩擦因数和更低的磨损量,表明MgO@CNTs在改善镁合金耐磨性能方面更有优势;载荷较低时(10 N),AZ91-MgO@CNTs的磨损机制主要为磨粒磨损;当载荷为50 N时,AZ91-MgO@CNTs出现磨粒磨损、氧化磨损和黏着磨损三种磨损机制。

     

  • 图  1  实验材料微观形貌 (a)AZ91粉末SEM图;(b)碳纳米管TEM图;(c)包覆氧化镁碳纳米管TEM形貌[14]

    Figure  1.  SEM image of experimental material (a)SEM image of AZ91 powder;(b)TEM images of CNTs;(c) CNTs coated with MgO nanoparticles[14]

    图  2  复合材料制备工艺流程

    Figure  2.  Preparation process of composite materials

    图  3  摩擦实验示意图

    Figure  3.  Schematic diagram of friction experiment

    图  4  复合材料摩擦因数与增强体质量分数的关系

    Figure  4.  Relationship of friction coefficient of composites with contents of reinforcement

    图  5  复合材料磨损量与增强体质量分数的关系

    Figure  5.  Relationship of wear mass loss of the composites with contents of reinforcement

    图  6  不同MgO@CNTs含量AZ91复合材料在不同载荷下磨损面SEM形貌和EDS图谱 (a)0 %;(b)1.0%;(c)3.0 %;(d)5.0%;(1)10 N;(2)50 N

    Figure  6.  Morphologies of worn surfaces of composites with different contents of MgO@CNTs under different loads and EDS analysis of selected regions (a)0%;(b)1.0%;(c)3.0 %;(d)5%;(1)10 N;(2)50 N

    图  7  不同载荷下AZ91-3.0%MgO@CNTs和AZ91-3.0%CNTs复合材料磨损面SEM形貌对比 (a)MgO@CNTs;(b)CNTs;(1)10 N;(2)50 N

    Figure  7.  Comparison of worn surfaces of the composites with 3.0%MgO@CNTs and 3.0%CNTs under different loads (a)3.0%CNTs;(b)3.0%MgO@CNTs;(1)10 N;(2)50 N

    图  8  不同载荷下不同MgO@CNTs含量复合材料磨损后3D形貌 (a)0%;(b)3%;(c)5%;(1)10 N;(2)50 N

    Figure  8.  3D morphologies of composites with various contents of MgO@CNTs after friction and wear under different loads    (a)0%;(b)3%;(c)5%;(1)10 N;(2)50 N

    图  9  不同MgO@CNTs含量AZ91复合材料在不同载荷下磨屑SEM形貌 (a)0%;(b)3%;(c)5%;(1)10 N;(2)50 N

    Figure  9.  SEM images of the wear debris of the composites with different contents of MgO@CNTs under different loads     (a)0%;(b)3%;(c)5%;(1)10 N;(2)50 N

    图  10  不同载荷下AZ91-3.0%MgO@CNTs和AZ91-3.0%CNTs复合材料磨屑SEM形貌对比 (a)CNTs;(b)MgO@CNTs;(1)10 N;(2)50 N

    Figure  10.  Comparison of the wear debris of the composites with 3.0% CNTs and 3.0%MgO@CNTs under different loads    (a)CNTs;(b)MgO@CNTs;(1)10 N;(2)50 N

    表  1  AZ91合金粉化学成分(质量分数/%)[15]

    Table  1.   Chemical composition of AZ91 alloy powder(mass fraction/%)[15]

    AlZnMnMg
    9.01. 00.4Bal
    下载: 导出CSV

    表  2  CNTs和MgO@CNTs增强AZ91复合材料的力学性能[14]

    Table  2.   Mechanical properties of AZ91 alloy composites reinforced with CNTs and MgO@CNTs[14]

    CompositesReinforcement content/%YS /MPaUTS/MPaMicrohardness,HV
    (AZ91)0168 ± 5.0215 ± 6.072.4 ± 2.0
    AZ91-CNTs1.0173 ± 4.0228 ± 5.079.2 ± 2.0
    2.0197 ± 4.5263 ± 5.587.1 ± 1.5
    3.0250 ± 3.8301 ± 4.594.1 ± 2.0
    4.0187 ± 3.5248 ± 3.984.3 ± 1.6
    5.0154 ± 4.4228 ± 5.680.2 ± 1.7
    AZ91-MgO@CNTs1.0190 ± 3.6260 ± 4.280.2 ± 1.5
    2.0210 ± 5.0294 ± 6.089.5 ± 1.0
    3.0284 ± 4.6331 ± 5.096.4 ± 1.2
    4.0206 ± 3.7272 ± 4.886.5 ± 1.2
    5.0175 ± 5.5255 ± 5.083.6 ± 1.5
    下载: 导出CSV

    表  3  不同增强体增强AZ91复合材料的磨损量

    Table  3.   Wear mass loss of AZ91 composites under different loads

    Composites Wear mass loss/mg Ref
    10 N 20 N 50 N
    AZ91 22.3±0.05 48±0.08 This work
    AZ91-3.0%MgO@CNTs 2.3±0.04 18.8±0.07 This work
    AZ91-3.0%CNTs 3.2 24 [10]
    AZ91-2.0%SiC 7 20 [19]
    AZ91-Al2Y 18 22 30 [20]
    下载: 导出CSV
  • [1] 李淑波,侯江涛,孟繁婧,等. CNTs/Mg-9Al复合材料微观组织、力学及导热性能 [J]. 材料工程,2023,51(1):26-35. doi: 10.11868/j.issn.1001-4381.2021.000960

    LI S B,HOU J T,MEN FQ,et al. Microstructure,mechanical and thermal properties of CNTs/Mg-9Al composites [J]. Journal of Materials Engineering,2023,51(1):26-35. doi: 10.11868/j.issn.1001-4381.2021.000960
    [2] PAN C,LIU X,HONG Q,et al. Recent advances in surface endothelialization of the magnesium alloy stent materials [J]. Journal of Magnesium and Alloys,2023,11(1):48-77. doi: 10.1016/j.jma.2022.12.017
    [3] IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature,1991,354(7):56-58.
    [4] GAO Y,HAO K,XU L,et al. CNTs distribution and ductility improvement mechanisms in oscillating laser-arc hybrid welding of AZ31B magnesium alloy [J]. Composites Part A,2023,164(1):107280.
    [5] CHANDRASEKHAR B,DHARME A,KUMAR SHARMA S,et al. Role of CNT in influencing the mechanical properties of the Mg-based composites:an overview[J]. Materials Today:Proceedings. doi.org/ 10.1016/j.matpr.2023.02.385.
    [6] ANUPA M,KUMAR KHATKAR S,KUMAR P,et al. Reinforcement philosophy and effect of nano sized materials on mechanical,corrosive and wear behavior of magnesium nanocomposites-a critical review [J]. Materials Today:Proceedings. doi.org/10.1016/j.matpr.2023.02. 366.
    [7] ABBAS A,HUANG S J,BALLÓKOVÁ B,et al. Tribological effects of carbon nanotubes on magnesium alloy AZ31 and analyzing aging effects on CNTs/AZ31 composites fabricated by stir casting process [J]. Tribology International,2020,142(2):105982.
    [8] 陈隆波,曾效舒,郭纪林,等. 碳纳米管-ZM1镁锌基复合材料的摩擦磨损性能[J]. 铸造技术,2018,39(11):2450-2455.

    CHEN L B,ZENG X S,GUO J L,et al. Friction and wear properties of carbon nanotube-ZM1 Mg-Zn matrix composites[J]. Foundry Technology,2018,39(11):2450-2455.
    [9] HUANG S J,ABBAS A,BALLÓKOVÁ B,Effect of CNT on microstructure,dry sliding wear and compressive mechanical properties of AZ61 magnesium alloy [J]. Journal of Materials Research and Technology,2019,8(5):4273-4286.
    [10] 吴俊斌,曾效舒,罗雷,等. CNTs/AZ91复合材料的摩擦磨损性能 [J]. 机械工程材料,2015,11(39):101-105.

    WU J B,ZENG X S,LUO L,et al. Friction and wear properties of carbon nanotubes/AZ91 composites[J]. Materials for Mechanical Engineering,2015,11(39):101-105.
    [11] 袁秋红,曾效舒,刘勇,等. 碳纳米管增强镁基复合材料弹性模量的研究进展[J]. 中国有色金属学报,2015,25(1):86-97.

    YANG Q H,ZENG X S,LIU Y,et al. Research progress of elastic modulus of magnesium matrix composite reinforced by carbon nanotubes[J]. The Chinese Journal of Nonferrous Metals,2015,25(1):86-97.
    [12] 廖琳,袁绍涛,周佳俊,等. 氧化镁/碳纳米管界面稳定性[J]. 航空材料学报,2021,41(5):94-103.

    LIAO L,YUAN S T,ZHOU J J,et al. Stability of interface between MgO and carbon nanotubes[J]. Journal of Aeronautical Materials,2021,41(5):94-103.
    [13] 袁秋红,邹韶明,熊建强,等. 氧化镁包覆CNTs增强AZ91D基复合材料的力学性能[J]. 特种铸造及有色合金,2014,34(12):1307-1311.

    YUAN Q H,ZHOU S M,XIONG J Q,et al. Mechanical properties of AZ91D alloy reinforced by carbon nanotubes coated with MgO[J]. Special-cast and Non-ferrous Alloys,2014,34(12):1307-1311.
    [14] YUAN Q H,ZENG X S,LIU Y,et al. Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO [J]. Carbon,2016,96(1):843-855.
    [15] YUAN Q H,ZHOU G H,LIAO L,et al. Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets [J]. Carbon,2018,127(2):177-186.
    [16] FU D M. YUAN Q H,ZENG X S,et al. Fabrication of carbon nanotube reinforced AZ91D composite with superior mechanical properties [J]. Transactions of Nonferrous Metals Society of China,2017,27(8):1716-1724. doi: 10.1016/S1003-6326(17)60194-8
    [17] ZHOU J,ZHONG K,ZHAO C,MENG H,et al. Effect of carbon nanotubes grown temperature on the fracture behavior of carbon fiber reinforced magnesium matrix composites:interlaminar shear strength and tensile strength [J]. Ceramics International,2021,47(10):6597-6607.
    [18] ALLADI A,ALURI M,MADDELA N,et al. Recent progress of CNTs reinforcement with metal matrix composites using friction stir processing [J]. Materials Today:proceedings,2021,44(11):1731-1738.
    [19] 刘世英,李文珍. 纳米SiCp增强AZ91D复合材料的摩擦磨损性能 [J]. 特种铸造及有色合金,2012,32(10):935-939.

    LIU S Y,LI W Z. Friction and wear properties of nano-sized SiCp particles reinforced AZ91D composites[J]. Special-cast and Non-ferrous Alloys,2012,32(10):935-939.
    [20] 刘渊,闫洪,王志伟. 流变成形压力对Al2Y/AZ91镁基复合材料摩擦磨损行为的影响[J]. 材料科学与工艺,2016,24(2):29-35. doi: 10.11951/j.issn.1005-0299.20160202

    LIU Y,YAN H,WANG Z W. Effects of rheological forming pressure on friction and wear characteristics of Al2Y/AZ91 magnesium matrix composites [J]. Materials Science & Technology,2016,24(2):29-35. doi: 10.11951/j.issn.1005-0299.20160202
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  8
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-24
  • 修回日期:  2023-04-25
  • 网络出版日期:  2023-10-18
  • 刊出日期:  2023-10-01

目录

    /

    返回文章
    返回

    《航空材料学报》关于谨防假冒期刊的郑重声明

    近期,有不法分子冒充《航空材料学报》期刊及官网,谎称提供论文发表服务,发布虚假约稿信息,骗取作者发表费用,为此,本编辑部郑重声明如下:

    1、http://www.hkclxb.cn 为假冒网站,与《航空材料学报》没有任何关系。我刊没有委托任何第三方机构或个人,代表我刊约稿或提供发表服务。

    2、《航空材料学报》为中文期刊,只接收中文文章投稿,目前不刊登英文文章。

    3. 本刊官网是http://jam.biam.ac.cn/,本刊的官方投稿方式为网上投稿(登录官网首页—作者投稿)。如有不明可电话咨询,联系电话是010-62496277。

    敬请广大读者和作者认真识别,谨防上当受骗。