制备工艺对多孔Ti6Al4V微观结构和性能的影响

戴志伟 吴亚东 朱伟健 王泽铭 苏磊 彭康 王红洁

戴志伟,吴亚东,朱伟健,等. 制备工艺对多孔Ti6Al4V微观结构和性能的影响[J]. 航空材料学报,2023,43(6):36-43 doi: 10.11868/j.issn.1005-5053.2023.000051
引用本文: 戴志伟,吴亚东,朱伟健,等. 制备工艺对多孔Ti6Al4V微观结构和性能的影响[J]. 航空材料学报,2023,43(6):36-43 doi: 10.11868/j.issn.1005-5053.2023.000051
DAI Zhiwei,WU Yadong,ZHU Weijian,et al. Effects of preparation process on microstructure and properties of porous Ti6Al4V[J]. Journal of Aeronautical Materials,2023,43(6):36-43 doi: 10.11868/j.issn.1005-5053.2023.000051
Citation: DAI Zhiwei,WU Yadong,ZHU Weijian,et al. Effects of preparation process on microstructure and properties of porous Ti6Al4V[J]. Journal of Aeronautical Materials,2023,43(6):36-43 doi: 10.11868/j.issn.1005-5053.2023.000051

制备工艺对多孔Ti6Al4V微观结构和性能的影响

doi: 10.11868/j.issn.1005-5053.2023.000051
基金项目: 基础科研计划项目(JCKY2019203D001)
详细信息
    通讯作者:

    吴亚东(1989—),男,博士,高级工程师,主要研究方向飞行器总体设计,联系地址:北京市丰台区南大红门路1号(100076),E-mail:yadongwu@vip.163.com

    王红洁(1969—),女,博士,教授,主要研究方向多孔材料及先进陶瓷,联系地址:陕西省西安市咸宁西路28号西安交通大学 金属材料强度国家重点实验室(710049),E-mail: hjwang@xjtu.edu.cn

  • 中图分类号: TG321

Effects of preparation process on microstructure and properties of porous Ti6Al4V

  • 摘要: 多孔介质强迫发汗冷却是解决高超声速飞行器前缘热防护问题的有效措施。其中,多孔介质的孔隙结构及性能对于其冷却效果和可靠性影响显著,因此,制备出符合强迫发汗冷却要求的多孔材料至关重要。本工作以Ti6Al4V预合金粉末为原料,采用模压成型结合高温烧结,制备了不同开气孔率的多孔Ti6Al4V试样,通过金相及SEM观察、力学性能测试、XRD分析等方法研究烧结温度和保温时间对多孔Ti6Al4V孔隙形貌、显微组织和力学性能的影响。结果表明:提高烧结温度、延长保温时间会降低材料的开气孔率;开气孔率高时,材料中孔隙连通,渗流率高,但样品强度低;开气孔率低时,材料中孔隙闭合,大孔数量减少,渗流率低,强度高。其中开气孔率为21.8%的多孔Ti6Al4V试样综合性能最好。当该多孔Ti6Al4V样品作为主动防热材料时,可以耐受平均热流为2.5 MW/m2的火焰烧蚀。

     

  • 图  1  不同烧结温度下材料的XRD谱图以及对应的组织形貌 (a)XRD;(b)1000 ℃形貌;(c)1100 ℃形貌;(d)1200 ℃形貌

    Figure  1.  XRD patterns and microstructures of samples prepared at different temperatures (a)XRD;(b)microstructures of samples prepared at 1000 ℃; (c) microstructures of samples prepared at1100 ℃;(d) microstructures of samples prepared at 1200 ℃

    图  2  不同烧结温度下材料的孔隙率及对应的孔隙形貌 (a)总气孔率、开气孔率和闭气孔率;(b)1000 ℃制备样品中气孔形貌;(c)1100 ℃制备样品中气孔形貌;(d)1200 ℃制备样品中气孔形貌

    Figure  2.  Porosities and morphologies of pores of samples prepared at different temperatures (a) total porosity, open porosity and closed porosity;(b) morphologies of pores in samples prepared at 1000 ℃;(c) morphologies of pores in samples prepared at 1100 ℃; (d) morphologies of pores in samples prepared at 1200 ℃

    图  3  不同烧结温度所获样品的孔径分布

    Figure  3.  Pore distributions in samples prepared at different temperatures

    图  4  不同烧结温度下材料的抗弯强度以及对应的断口形貌 (a)抗弯强度和相对密度;(b)1000 ℃制备样品的断口形貌;(c)1100 ℃制备样品的断口形貌;(d)1200℃制备样品的断口形貌;(e)1200 ℃制备样品的韧窝

    Figure  4.  Bending strength and microstructure of fracture sections in samples prepared at different temperatures (a) bending strength and relative densities;(b) morphologies of fracture surface insamples prepared at 1000 ℃; (c) morphologies of fracture surface insamples prepared at1100 ℃;(d) morphologies of fracture surface insamples prepared at 1200 ℃;(e)dimples of fracture surface in samples prepared at 1200 ℃

    图  5  1000 ℃烧结温度下,保温时间对样品气孔率和孔径分布的影响  (a)气孔率;(b)孔径分布

    Figure  5.  Effect of holding time on samples porosity and pore diameter distributions of the samples sintered at 1000℃  (a) porosity;(b) pore diameter distributions

    图  6  1000 ℃烧结温度下保温时间对样品弯曲强度和相对密度的影响

    Figure  6.  Effect of holding time on bending strength and relative densities of samples sintered at 1000 ℃

    图  7  平均热流密度为2.5 MW/m2的氧乙炔火焰烧蚀前后材料正壁面对比

    Figure  7.  Surface morphologies of porous Ti6Al4V sample before and after erosion under an oxyacetylene blow tortch with a heat flow density of 2.5 MW/m2

    表  1  不同孔隙率的多孔Ti6Al4V样品的性能

    Table  1.   Properties of porous Ti6Al4V with different porosities

    Sample Open porosity/
    %
    Bending strength/
    MPa
    Seepage rate/
    m−2
    1 39.1 110 6.14×10−14
    2 21.8 789 2.70×10−14
    3 13.6 1280 2.74×10−15
    下载: 导出CSV
  • [1] UYANNA O,NAJAFI H. Thermal protection systems for space vehicles:a review on technology development,current challenges and future prospects[J]. Acta Astronautica,2020,176:341-356. doi: 10.1016/j.actaastro.2020.06.047
    [2] WANG J X,LI Y Z,LIU X D,et al. Recent active thermal management technologies for the development of energy-optimized aerospace vehicles in China[J]. Chinese Journal of Aeronautics,2021,34(2):1-27. doi: 10.1016/j.cja.2020.06.021
    [3] WEI K, HE R, CHENG X, et al. A lightweight, high compression strength ultra high temperature ceramic corrugated panel with potential for thermal protection system applications[J]. Materials & Design,2015,66:552-556.
    [4] ZHANG S,LI X,ZUO J,et al. Research progress on active thermal protection for hypersonic vehicles[J]. Progress in Aerospace Sciences,2020,119:100646. doi: 10.1016/j.paerosci.2020.100646
    [5] ZHU Y H,PENG W,XU R N,et al. Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles[J]. Chinese Journal of Aeronautics,2018,31(10):1929-1953. doi: 10.1016/j.cja.2018.06.011
    [6] JING T,XIN Y,ZHANG L,et al. Application of carbon fiber-reinforced ceramic composites in active thermal protection of advanced propulsion systems:a review[J]. The Chemical Record,2023,23(4):1527-1545.
    [7] QIAO Y,LIU P,LIU W,et al. Analysis and optimization of flow and heat transfer performance of active thermal protection channel for hypersonic aircraft[J]. Case Studies in Thermal Engineering,2022,39:102476. doi: 10.1016/j.csite.2022.102476
    [8] CHAMPION J,DESHAIES B. Experimental investigation of the wall flow and cooling of combustion chamber walls [C]//31st Joint Propulsion Conference and Exhibit. San Diego,America:AIAA,1995:2498.
    [9] FIGUEIREDO A R,COSTA J J,Experimental analysis of the use of wet porous media for thermal protection against high intensity heat fluxes[J]. International Journal of Heat and Mass Transfer,2004,47(1):11-19.
    [10] BOUCHEZ M,BEYER S. Ptah-socar fuel-cooled composite materials structure for dual-mode ramjet and liquid rocket engines-2005 status[C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Capua,Italy:AIAA,2005:3434.
    [11] HAIDN O,GREUEL D,HERBERTZ A,et al. Transpiration cooling appllied to C/C liners of cryogenic liquid rocket engines[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Fort Lauderdale,Florida:AIAA,2004:3682.
    [12] LIU Y Q,JIANG P X,JIN S S,et al. Transpiration cooling of a nose cone by various foreign gases[J]. International Journal of Heat and Mass Transfer,2010,53(23):5364-5372.
    [13] NGUYENTAT T,HAYES W A,MELAND T O,et a1. Fabrication of a liquid rocket combustion chamber liner of advanced copper alloy grcop-84 via formed platelet liner technology[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Sacramento,California:AIAA ,2006:5129.
    [14] WANG J H,ZHAO L J,WANG X C,et al. An experimental investigation on transpiration cooling of wedge shaped nose cone with liquid coolant[J]. International Journal of Heat and Mass Transfer,2014,75(7):442-449.
    [15] MAYER W. TEKAN-Research on cryogenic rocket engines at DLR Lampoldshausen[C]//Aiaa/asme/sae/asee Joint Propulsion Conference and Exhibit. Huntsville,Alabama:AIAA,2000:1-13.
    [16] 刘志全,马武军. C/SiC复合材料推力室研究[J]. 火箭推进,2011,37(2):19-24. doi: 10.3969/j.issn.1672-9374.2011.02.004

    LIU Z Q,MA W J. Applied research of rocket engine thrusters made of ceramic matrix composite[J]. Journal of Rocket Propulsion,2011,37(2):19-24. doi: 10.3969/j.issn.1672-9374.2011.02.004
    [17] SURESH G,RAMESH M R,SRINATH M S. Surface engineered titanium alloys for biomedical,automotive,and aerospace applications[M]//Advances in Processing of Lightweight Metal Alloys and Composites:Microstructural Characterization and Property Correlation. Singapore:Springer Nature,2022:89-102.
    [18] TIWARY A,KUMAR R,CHOHAN J S. A review on characteristics of composite and advanced materials used for aerospace applications[J]. Materials Today:Proceedings,2022,51:865-870.
    [19] MANIKANDAN P,KUMAR V A,PRADEEP P I,et al. On the anisotropy in room-temperature mechanical properties of laser powder bed fusion processed Ti6Al4V-ELI alloy for aerospace applications[J]. Journal of Materials Science,2022,57(21):9599-9618. doi: 10.1007/s10853-022-07032-y
    [20] YANG X, BARRETT R A, TONG M, et al. Prediction of microstructure evolution for additive manufacturing of Ti-6Al-4V[J]. Procedia Manufacturing,2020,47:1178-1183.
    [21] 张绪虎,单群,陈永来,等. 钛合金在航天飞行器上的应用和发展[J]. 中国材料进展,2011,30(6):28-32

    ZHANG X H,SHAN Q,CHEN Y L,et al. Application and development of titanium alloys for aircrafts[J]. Materials China,2011,30(6):28-32.
    [22] 莫畏. 钛的金属学和热处理[M]. 北京:冶金工业出版社,2008.
    [23] BOLOZONI L,RUIZE M,GORDO E. Feasibility study of the production of biomedical Ti-6Al-4V alloy by powder metallurgy[J]. Journal of Materials Science and Engineering,2015,49(3):400-407.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  166
  • HTML全文浏览量:  66
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-10
  • 录用日期:  2023-08-24
  • 修回日期:  2023-07-01
  • 刊出日期:  2023-12-08

目录

    /

    返回文章
    返回

    《航空材料学报》关于谨防假冒期刊的郑重声明

    近期,有不法分子冒充《航空材料学报》期刊及官网,谎称提供论文发表服务,发布虚假约稿信息,骗取作者发表费用,为此,本编辑部郑重声明如下:

    1、http://www.hkclxb.cn 为假冒网站,与《航空材料学报》没有任何关系。我刊没有委托任何第三方机构或个人,代表我刊约稿或提供发表服务。

    2、《航空材料学报》为中文期刊,只接收中文文章投稿,目前不刊登英文文章。

    3. 本刊官网是http://jam.biam.ac.cn/,本刊的官方投稿方式为网上投稿(登录官网首页—作者投稿)。如有不明可电话咨询,联系电话是010-62496277。

    敬请广大读者和作者认真识别,谨防上当受骗。