Mechanical and electromagnetic shielding properties of PIP-2D SiCf/SiC composite materials modified with Al filler
-
摘要: 以Al粉为活性填料,采用先驱体浸渍裂解法(PIP法)制备二维连续碳化硅纤维增强碳化硅复合材料(2D SiCf/SiC复合材料),采用XRD、SEM和热失重仪分析不同Al粉含量对聚碳硅烷裂解产物的组织成分演变行为,采用力学试验机和矢量网络分析仪研究不同Al粉含量对复合材料的力学及电磁屏蔽性能影响。结果表明:随着Al填料质量分数从0%增加至40%,复合材料弯曲强度先升高后下降,最高可达383 MPa;Al填料的引入使得复合材料复介电常数逐渐升高,电磁屏蔽效能逐渐增加至26 dB,得到了显著的提升,电磁屏蔽效能大幅度提升主要原因是Al填料含量增加引起复合材料复介电常数虚部显著增加。
-
关键词:
- 活性填料Al /
- 先驱体浸渍裂解 /
- SiCf/SiC复合材料 /
- 电磁屏蔽性能
Abstract: A two-dimensional continuous silicon carbide fiber reinforced silicon carbide composite material(2D SiCf/SiC composite material)was prepared by precursor impregnation cracking method(PIP method)using Al powder as the active filler. XRD, SEM and thermogravimetry were used to analyze the evolution behavior of the microstructure and composition of polycarbosilane pyrolysis products with various Al powder contents. The effects of various Al powder contents on the mechanical and electromagnetic shielding properties of the composites were studied by mechanical testing machine and vector network analyzer. The results show that as the mass fraction of Al filler increases from 0% to 40%, the bending strength of the composite material first increases and then decreases, and the maximum bending strength can reach 383 MPa. The introduction of aluminum filler leads to a gradual increase in the complex dielectric constant of the composite material, and the electromagnetic shielding efficiency gradually increases to 26 dB, which has been greatly improved. This is mainly due to the significant increase in the imaginary part of the complex dielectric constant caused by the increase in the content of Al filler, resulting in a significant improvement in the absorption and shielding efficiency of the composite material. -
图 7 不同Al含量SiCf/SiC复合材料在X波段的电磁屏蔽性能(a)反射屏蔽效能;(b)吸收屏蔽效能;(c)总电磁屏蔽效能
Figure 7. Electromagnetic shielding performances of SiCf/SiC composite materials with Al filler of various contents in X-band(a)reflective shielding effectiveness;(b)absorption shielding effectiveness;(c)total electromagnetic shielding effectiveness
表 1 不同Al含量混合前驱体溶液
Table 1. Composition of Al filler mixed precursor solution
Number Xylene/g PCS/g Al/g Mass fraction of Al/% 1 50 50 0 0 2 55.56 50 5.56 10 3 62.5 50 12.5 20 4 83.34 50 33.34 40 表 2 不同Al含量SiCf/SiC复合材料性能
Table 2. Properties of fabricated SiCf/SiC composites with Al filler of various contents
Al content/% Porosity /% Density/
(g·cm−3)PIP cycles Flexural strength /
MPaDisplacement /
mmFracture toughness/
(MPa·m−1/2)0 13.4 2.21 10 304±8 0.49±0.03 18.5±0.7 10 9.1 2.35 6 383±7 0.60±0.02 18.8±1.0 20 14.1 2.17 4 291±10 0.46±0.04 17.9±1.2 40 14.7 2.15 4 257±8 0.52±0.04 18.3±1.3 -
[1] LIU L,ZHANG D. Research progress in electromagnetic shielding materials[J]. Journal of Functional Materials,2015,46(3):03016-03022. [2] 王晓辉,唐露新,李运智,等. 电磁屏蔽技术及材料应用研究新动向[J]. 材料开发与应用,2008,23(2):67-71.WANG X H,TANG L X,LI Y Z,et al. Electrical-magnetic field shield technology and material development [J]. Development and Application of Materials,2008,23(2):67-71. [3] CHEN L Q,YIN X W,FAN X M,et al. Mechanical and electromagnetic shielding properties of carbon fiber reinforced silicon carbide matrix composites[J]. Carbon,2015,95:10-19. doi: 10.1016/j.carbon.2015.08.011 [4] 曹梦,唐雪娇,韩长秀,等. 非金属基体化学镀镍在电磁屏蔽方面的研究现状[J]. 天津化工,2006,20(4):4-6.CAO M,TANG X J,HAN C X,et al. Research status of electroless nickel plating on non-metallic substrates in electromagnetic shielding [J]. Tianjin Chemical Industry,2006,20(4):4-6. [5] 胥永,蒋柏泉,黄庆荣,等. 木材化学镀稀有金属电磁屏蔽复合材料研究[J]. 稀有金属,2007(增刊1):155-158.XU Y,JIANG B Q,HUANG Q R,et al. Study on electromagnetic shielding composite material—rare metal deposited on wood by electroless plating[J]. Rare Metals,2007(Suppl 1):155-158. [6] LIANG J,YAN W,YI H,et al. Electromagnetic interference shielding of graphene/epoxy composites[J]. Carbon,2009,47(3):922-925. doi: 10.1016/j.carbon.2008.12.038 [7] 贾汝锋,尹保林,张高鸿,等. 聚四氟乙烯基电磁屏蔽复合膜的研制及特性研究[J]. 兵工学报,2022,43(11):2916-2923.JIA R F,YIN B L,ZHANG G H,et al. Development and characterization of polytetrafluoroethylene based electromagnetic shielding composite films[J]. Journal of Military Engineering,2022,43(11):2916-2923. [8] 刘艳辉,马鸣龙,张奎,等. 镁合金电磁屏蔽性能的研究进展[J]. 材料导报,2022,36(18):100-105.LIU Y H,MA M L,ZHANG K,et al. Research progress on electromagnetic shielding performance of magnesium alloys[J]. Materials Introduction,2022,36(18):100-105. [9] 刘后宝,傅仁利,苏新清,等. MXene材料的结构,性能及在电磁屏蔽领域的应用[J]. 材料导报,2021,35(13):13067-13074.LIU H B,FU R L,SU X Q,et al. The structure,properties,and application of MXene materials in the field of electromagnetic shielding[J]. Materials Introduction,2021,35(13):13067-13074. [10] 谭妍妍,尚晓煜,孙俊卓,等. 聚偏氟乙烯基电磁屏蔽材料的研究进展[J]. 高分子材料科学与工程,2022,38(12):155-161.TAN Y Y,SHANG X Y,SUN J Z,et al. Research progress of polyvinylidene fluoride based electromagnetic shielding materials[J]. Polymer Materials Science and Engineering,2022,38(12):155-161. [11] MU Y,ZHOU W,LUO F,et al. Electromagnetic interference shielding effectiveness of SiCf/SiC composites with PIP-SiC interphase after thermal oxidation in air[J]. Journal of Materials Science,2014,49(4):1527-1536. doi: 10.1007/s10853-013-7834-3 [12] LI X,ZHANG L T,YIN X W,et al. Effect of chemical vapor infiltration of SiC on the mechanical and electromagnetic properties of Si3N4-SiC ceramic[J]. Scripta Materialia,2010,63(6):657-660. doi: 10.1016/j.scriptamat.2010.05.034 [13] YIN X W,XUE Y,ZHANG L T,et al. Dielectric,electromagnetic absorption and interference shielding properties of porous yttria-stabilized zirconia/silicon carbide composites[J]. Ceramics International,2012,38(3):2421-2427. doi: 10.1016/j.ceramint.2011.11.008 [14] DUAN S C,ZHU D M,JIA H Y,et al. Enhanced mechanical and dielectric properties of SiCf/SiC composites with silicon oxycarbide interphase[J]. Ceramics International,2017,44:631-637. [15] GREIL P. Active-filler-controlled pyrolysis of preceramic polymers[J]. Journal of the American Ceramic Society. 2010,78(4):835-848. [16] DUAN S C,ZHU D M,ZHOU W C,et al. Mechanical and microwave absorption properties of SiCf/SiC-Al4C3 composite with EPD-SiO2/ZrO2 interphase prepared by precursor infiltration and active filler-controlled pyrolysis method[J]. Ceramics International,2020,46:12344-12352. doi: 10.1016/j.ceramint.2020.01.285 [17] WAHAB Q,HULTMAN L,SUNDGREN J E. Composition and structure of epitaxial β-SiC films grown by reactive magnetron sputtering on Si(100) substrates[J]. Materials Science and Engineering:B,1992,11:61-66. [18] ZHU Y,HUANG Z,DONG S,et al. The fabrication of 2D Cf/SiC composite by a modified PIP process using active Al powders as active filler[J]. Materials Characterization,2008,59(7):975-978. doi: 10.1016/j.matchar.2007.07.014 [19] MAILLÉ L,BER S L,DOURGES M A,et al. Manufacturing of ceramic matrix composite using a hybrid process combining TiSi2 active filler infiltration and preceramic impregnation and pyrolysis[J]. Journal of the European Ceramic Society,2014,34(2):189-195. doi: 10.1016/j.jeurceramsoc.2013.08.031 [20] DUAN S C,ZHU D M,DONG J,et al. Enhanced mechanical and microwave absorption properties of SiCf/SiC composite using aluminum powder as active filler[J]. Journal of Alloys and Compounds,2019,790:58-69. doi: 10.1016/j.jallcom.2019.03.171 [21] 穆阳. SiCf/SiC高温结构吸波复合材料的制备及性能研究[D]. 西安:西北工业大学,2016::73-85.MU Y. Preparation and performance study of SiCf/SiC high temperature structure absorbing composite materials[D]. Xi’an:Northwestern Polytechnical University,2016:73-85. [22] DUAN S C,ZHU D M,ZHOU W C,et al. Mechanical and microwave absorption properties of Ti-filled SiCf/SiC composites via precursor infiltration and pyrolysis[J]. Journal of Materials Science:Materials in Electronics,2020,31:2634-2642. doi: 10.1007/s10854-019-02802-y -